// Display mode mode(0); // Display warning for floating point exception ieee(1); clear; clc; disp("Turbomachinery Design and Theory,Rama S. R. Gorla and Aijaz A. Khan, Chapter 3, Example 24") Q = 0.545//m3/s D1 = 0.8//m D2 = 0.4//m H =14//m alpha2 = 90//degrees N = 370 //beta1 = beta2 disp("Peripheral velocity of the wheel at inlet") U1 = %pi*D1*N/60 disp("Velocity of flow at the exit,") Cr2 = 2.8//m/s alpha2 = 90 C2 = Cr2 g = 9.81; disp("Work done/s by the turbine per kg of water = Cw*U1/g") disp("But this is equal to the head utilized by the turbine, i.e.") disp("Cw1U1/g = H - C2/2g") disp("(Assuming there is no loss of pressure at outlet)") Cw1 = (H - C2/(2*g) )*g/U1 disp("Work done per second by turbine") rho = 1000; W = rho*Q*Cw1*U1/(1000)//kW disp("Available power or water power") Pav = rho*g*Q*H /1000//kW disp("Actual available power") Pac = 70//kW disp("Overall turbine efficiency is") etat = Pac/Pav * 100 disp("This is the actual hydraulic efficiency as required in the problem. Hydraulic Efficiency is") etah = W/Pav * 100 disp("This is the theoretical efficiency") disp("Q = pi*D1b1Cr1 = pi*D2b2Cr2") disp("(Neglecting blade thickness)") Cr1 = Cr2 * D2/D1 disp("Drawing inlet velocity triangle") //Cr1/(U1-Cw1) = 0.203 beta1 = atan(0.203)* 180/%pi C1 = (Cw1^2+Cr1^2)^0.5 //Cw1/C1 = 0.995 aplha1 = acos(0.995)*180 /%pi