// Example 5.8: VCEQ clc, clear VBE=-0.7; // in volts betaf=120; // From Fig. 5.19(a) VCC=18; // in volts R1=47e3; // in ohms R2=10e3; // in ohms RC=2.4e3; // in ohms RE=1.1e3; // in ohms // Using Thevnin's theorem to obtain equivalent circuit given in Fig. 5.19(b) VBB=R2*VCC/(R1+R2); // in volts RB=R1*R2/(R1+R2); // in ohms // Applying KVL in the base emitter loop and putting Ic= βF*Ib IB=(VBB+VBE)/(RB+(1+betaf)*RE); // in amperes IC=betaf*IB; // in amperes // In the collector emitter loop VCE=-VCC+IC*(RC+RE)+IB*RE; // in volts disp(VCE,"VCEQ (V) =");