// Example 5.5: VCEQ, ICQ clc, clear VBE=0.7; // in volts betaf=120; // From Fig. 5.15 VCC=20; // in volts VEE=20; // in volts R1=8.2e3; // in ohms R2=2.2e3; // in ohms RC=2.7e3; // in ohms RE=1.8e3; // in ohms // Using Thevnin's theorem to obtain equivalent circuit given in Fig. 5.16(b) RB=R1*R2/(R1+R2); // in ohms // From Fig. 5.16(a) I=(VCC+VEE)/(R1+R2); // in amperes VBB=I*R2-VEE; // in volts // Writing KVL for the base emitter loop and putting Ic= βF*Ib gives IB=(VEE+VBB-VBE)/(RB+(1+betaf)*RE); // in amperes IC=betaf*IB; // in amperes // KVL for the collector loop gives VCE=VCC+VEE-IC*(RC+RE)-IB*RE; // in volts IC=IC*1e3; // in mili-amperes disp(VCE,"VCEQ (V) ="); disp(IC,"ICQ (mA) =");