// Example 4.8: :Labelled voltages and currents clc, clear betaf=100; // Current gain disp("Let us assume that the transistor is in active region."); VBE_active=-0.7; // in volts // From Fig. 4.25(a) VCC=-10; // in volts VEE=10; // in volts RE=6.8e3; // in ohms RC=10e3; // in ohms R1=300e3; // in ohms R2=180e3; // in ohms // Applying Thevnin's theorem at point B R_th=R1*R2/(R1+R2); // in ohms V_th=VEE-(R2*(VEE-VCC)/(R1+R2)); // in volts // From the Thevnin equivalent circuit in Fig. 4.25(b) // Writing KVL for base-emitter circuit and putting Ic= βF*Ib IB=(VEE-V_th+VBE_active)/(R_th+(1+betaf)*RE); // in amperes IB=IB*1e3; // in miliamperes IC=betaf*IB; // in miliamperes IE=IB+IC; // in miliamperes VC=VCC+IC*RC*1e-3; // in volts VE=VEE-IE*RE*1e-3; // in volts VB=V_th+IB*R_th*1e-3; // in volts I1=(VEE-VB)/R2; // in amperes I1=I1*1e3; // in miliamperes I2=I1+IB; // in miliamperes disp(IC,"IC (mA) ="); disp(IE,"IE (mA) ="); disp(IB,"IB (mA) ="); disp(I1,"I1 (mA) ="); disp(I2,"I2 (mA) ="); disp(VC,"VC (V) ="); disp(VE,"VE (V) ="); disp(VB,"VB (V) =");