// Example 4.3: Region of operation, Node currents and voltages clc, clear betaf=100; // Current gain disp("Let us assume that the transistor is in active region."); VBE_active=0.7; // in volts // From Fig. 4.19 VCC=10; // in volts VBB=5; // in volts RB=100e3; // in ohms RE=2e3; // in ohms RC=2e3; // in ohms // Writing KVL to the base circuit and putting Ic= βF*Ib IB=(VBB-VBE_active)/(RB+(1+betaf)*RE); // in amperes IB=IB*1e3; // in miliamperes IC=betaf*IB; // in miliamperes IE=IB+IC; // in miliamperes VB=VBB-IB*RB*1e-3; // in volts VE=IE*RE*1e-3; // in volts VC=VCC-IC*RC*1e-3; // in volts disp(VC,"VC (V) ="); disp(VE,"VE (V) ="); disp(VB,"VB (V) ="); disp(IC,"IC (mA) ="); disp(IE,"IE (mA) ="); disp(IB,"IB (mA) ="); disp("Since base voltage VB is 3.6 V and collector is at 7.2 V, so collector-base junction is reverse biased by 3.6 V. Thus our assumption that the transistor is in active region is valid.")