// Example 10.23: Value of fH for the cascade clc, clear bta=100; r_pi1=0.5e3; // in ohms r_pi2=0.5e3; // in ohms r_pi3=1e3; // in ohms fT=200e6; // in hertz C_mu=1e-12; // in farads // From Fig. 10.85 RS=2e3; // in ohms RE1=5e3; // in ohms RC2=2e3; // in ohms RC3=1e3; // in ohms RE3=100; // in ohms function[c]=parallel(a,b) c=a*b/(a+b); endfunction // From Fig. 10.86 Ro1=parallel(RE1,(RS+r_pi1)/(1+bta)); // in ohms gm2=bta/r_pi2; // in mho gm3=bta/r_pi3; // in mho C_pi2=bta/(2*%pi*fT*r_pi2)-C_mu; // in farads C_pi3=bta/(2*%pi*fT*r_pi3)-C_mu; // in farads // From Fig. 10.87 C1=C_pi2; // in farads C2=C_mu; // in farads C3=C_pi3; // in farads C4=C_mu; // in farads R11_0=parallel(Ro1,r_pi1); // in ohms RL1=parallel(RC2,r_pi3+(1+bta)*RE3); // in ohms R22_0=R11_0+RL1*(1+gm2*R11_0); // in ohms // From Fig. 10.88 R_dash=2.1e3/(1+10); // in ohms R33_0=parallel(RC2,R_dash); // in ohms // From Fig. 10.89 R44_0=(3+2*98/13.1)*1e3; // in ohms a1=R11_0*C1+R22_0*C2+R33_0*C3+R44_0*C4; // in seconds fH=1/(2*%pi*a1); // in hertz fH=fH*1e-6; // in Mega-hertz disp(fH,"Value of fH for the cascade (MHz) =");