// Example 10.19: Approximate value of fH clc, clear btaf=150; VA=120; // in volts fT=400e6; // in hertz C_mu=0.5e-12; // in farads ICQ=100e-6; // in amperes RS=50e3; // in ohms RC=250e3; // in ohms VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts gm=ICQ/VT; // in mho r_pi=btaf/gm; // in ohms ro=VA/ICQ; // in ohms C_pi=btaf/(2*%pi*fT*r_pi)-C_mu; // in farads function[c]=parallel(a,b) c=a*b/(a+b); endfunction // From AC model in Fig. 10.73 Ri=r_pi+(1+btaf)*parallel(ro,r_pi); // in ohms R_mu1=parallel(RS,Ri); // in ohms // From Fig. 10.75(b) R=(50+36.36)/(1+145); // in ohms R_pi1=parallel(r_pi,R); // in ohms R_pi2=parallel(r_pi,parallel((RS+r_pi)/(1+btaf),ro)); // in ohms RL=parallel(ro,RC); // in ohms R_mu2=R_pi2*(1+gm*RL)+RL; // in ohms a1=R_mu1*C_mu+R_pi1*C_pi+R_pi2*C_pi+R_mu2*C_mu; // in seconds fH=1/(2*%pi*a1); // in hertz fH=fH*1e-3; // in kilo-hertz disp(fH,"Approximate value of fH (kHz) =");