printf("\t example 7.8 \n"); printf("\t approximate values are mentioned in the book \n"); T1=228; // inlet hot fluid,F T2=228; // outlet hot fluid,F t1=100; // inlet cold fluid,F t2=122; // outlet cold fluid,F W=200000; // lb/hr w=3950; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for solution \n"); c=(0.2*0.30)+(0.8*1); // bcoz of 20 percent solution,Btu/(lb)*(F) Q1=((W)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for solution is : %.2e Btu/hr \n",Q1); printf("\t for steam \n"); l=960.1; // latent heat of condensation,Btu/(lb) Q=((w)*(l)); // Btu/hr printf("\t total heat required for steam is : %.2e Btu/hr \n",Q); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.1f F \n",LMTD); R=((T1-T2)/(t2-t1)); printf("\t R is : %.0f \n",R); delt=(LMTD); // when R=0,F printf("\t delt is : %.1f F \n",delt); printf("\t The steam coefficient will be very great compared with that for the sugar solution, and the tube wall will be considerably nearer 228°F than the caloric temperature of the fluid. Obtain Fc from U1 and U0 Failure to correct for wall effects, however, will keep the heater calculation on the safe side.\n"); ta=111; //F Ta=228; //f printf("\t hot fluid:tube side,steam \n"); Nt=76; n=2; // number of passes L=16; //ft at1=0.302; // flow area, in^2 at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48 printf("\t flow area is : %.4f ft^2 \n",at); Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2elb/(hr)*(ft^2) \n",Gt); mu2=0.0128*2.42; // at 228F,lb/(ft)*(hr) D=(0.62/12); // from table 10,ft Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Ret); hio=1500; // for condensation of steam printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); printf("\t cold fluid:shell side,sugar solution \n"); ID=12; // in d=0.75/12; // diameter of tube,ft Nt=76; // number of tubes as=((3.14*(12^2)/4)-(76*3.14*(0.75^2)/4))/144; // flow area,ft^2 printf("\t flow area is : %.2f ft^2 \n",as); Gs=(W/as); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs); mu1=1.30*2.42; // at 111F,lb/(ft)*(hr), from fig.14 De=((4*as)/(Nt*3.14*d)); // from eq.6.3,ft printf("\t De is : %.3f ft \n",De); Res=((De)*(Gs)/mu1); // reynolds number printf("\t reynolds number is : %.2e \n",Res); jH=61.5; // from fig.24, tube side data c=0.86; // Btu/(lb)*(F),at 111F,from fig.4 k=0.333; // Btu/(hr)*(ft^2)*(F/ft) Pr=((c)*(mu1)/k)^(1/3); // prandelt number raised to power 1/3 printf("\t Pr is : %.0f \n",Pr); Ho=((jH)*(k/De)*(Pr)); // H0=(h0/phya),using eq.6.15,Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Ho); muw=0.51*2.42; // at 210F,lb/(ft)*(hr), from fig.14 phys=(mu1/muw)^0.14; printf("\t phys is : %.2f \n",phys); // from fig.24 ho=(Ho)*(phys); // from eq.6.36 printf("\t Correct h0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); tw=(ta)+(((hio)/(hio+Ho))*(Ta-ta)); // from eq.5.31 printf("\t tw is : %.0f F \n",tw); Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc); A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10 A=(Nt*L*A2); // ft^2 printf("\t total surface area is : %.0f ft^2 \n",A); UD=((Q)/((A)*(LMTD))); printf("\t actual design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD); Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd); printf("\t pressure drop for inner pipe \n"); f=0.000155; // friction factor for reynolds number 82500, using fig.26 s=0.0008; phyt=1; D=0.0517; delPt=((f*(Gt^2)*(L)*(2))/(5.22*(10^10)*(D)*(s)*(phyt)))/2; // using eq.7.45,psi printf("\t delPt is : %.1f psi \n",delPt); printf("\t pressure drop for annulus \n"); De1=((4*as)/((Nt*3.14*d)+(3.14*1))); // from eq.6.4,ft printf("\t De1 is : %.3f ft \n",De1); Res1=(De1*Gs/mu1); // from eq 7.3 printf("\t Res1 is : %.2e \n",Res1); f=0.00025; // friction factor, using fig.26 s=1.08; // for reynolds number 25300,using fig.6 delPs=((f*(Gs^2)*(L)*(1))/(5.22*(10^10)*(De1)*(s)*(phys))); // using eq.7.44,psi printf("\t delPs is : %.2f psi \n",delPs); //end