printf("\t example 6.1 \n"); printf("\t approximate values are mentioned in the book \n"); T1=160; // inlet hot fluid,F T2=100; // outlet hot fluid,F t1=80; // inlet cold fluid,F t2=120; // outlet cold fluid,F w=9820; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for benzene \n"); tav=((t1+t2)/2); // F printf("\t average temperature of benzene is : %.0f F \n",tav); c=0.425; // Btu/(lb)*(F) Q=((w)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for benzene is : %.2e Btu/hr \n",Q); printf("\t for toulene \n"); Tav=((T1+T2)/2); //F printf("\t average temperature of toulene is : %.0f F \n",Tav); c=0.44; // Btu/(lb)*(F) W=((Q)/((c)*(T1-T2))); // lb/hr printf("\t W is :%.2e lb/hr \n",W); printf("\t 2.LMTD \n"); printf("\t for counter current flow \n"); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.1f F \n",LMTD); printf("\t 3.caloric temperatures \n"); printf("\t both streams will show that neither is viscous at the cold terminal (the viscosities less than 1 centipoise) and the temperature ranges and temperature difference are moderate. The coefficients may accordingly be evaluated from properties at the arithmetic mean, and the value of (mu/muw)^0.14 may be assumed equal to 1.0 \n"); tav=((t1+t2)/2); // F printf("\t average temperature of benzene is : %.0f F \n",tav); Tav=((T1+T2)/2); //F printf("\t average temperature of toulene is : %.0f F \n",Tav); printf("\t hot fluid:annulus,toulene \n"); D1=0.138; // ft D2=0.1725; // ft aa=((%pi)*(D2^2-D1^2)/4); // flow area,ft^2 printf("\t flow area is : %.5f ft^2 \n",aa); De=(D2^2-D1^2)/D1; // equiv diameter,ft printf("\t equiv diameter is : %.4f ft \n",De); Ga=(W/aa); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Ga); mu1=0.41*2.42; // at 130 F,lb/(ft)*(hr) Rea=((De)*(Ga)/mu1); // reynolds number printf("\t reynolds number is : %.1e \n",Rea); jH=167; // from fig.24 c=0.44; // Btu/(lb)*(F),at 130F k=0.085; // Btu/(hr)*(ft^2)*(F/ft), from table 4 Pr=((c)*(mu1)/k)^(1/3); // prandelt number raised to power 1/3 printf("\t Pr is : %.3f \n",Pr); ho=((jH)*(k/De)*(Pr)*(1^0.14)); // using eq.6.15b,Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); printf("\t cold fluid:inner pipe,benzene \n"); D=0.115; // ft ap=((%pi)*(D^2)/4); // flow area, ft^2 printf("\t flow area is : %.4f ft^2 \n",ap); Gp=(w/ap); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gp); mu2=0.5*2.42; // at 130 F,lb/(ft)*(hr) Rep=((D)*(Gp)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Rep); jH=236; // from fig.24 c=0.425; // Btu/(lb)*(F),at 130F k=0.091; // Btu/(hr)*(ft^2)*(F/ft), from table 4 Pr=((c)*(mu2)/k)^(1/3); // prandelt number raised to power 1/3 printf("\t Pr is : %.3f \n",Pr); hi=((jH)*(k/D)*(Pr)*(1^0.14)); // using eq.6.15a,Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); ID=1.38; // ft OD=1.66; //ft hio=((hi)*(ID/OD)); // using eq.6.5 printf("\t Correct hi to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc); Rd=0.002; // required by problem,(hr)*(ft^2)*(F)/Btu UD=((Uc)/((1)+(Uc*Rd))); // design overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD); A=((Q)/((UD)*(LMTD))); // required surface,ft^2 printf("\t required surface is : %.1f ft^2 \n",A); A1=0.435; // From Table 11 for 1(1/4)in IPS standard pipe there are 0.435 ft2 of external surface per foot length,ft^2 L=(A/A1); // required length;lin ft printf("\t required length is : %.0f lin ft \n",L); printf("\t This may be fulfilled by connecting three 20-ft hairpins in series \n"); A2=120*0.435; // actual surface supplied,ft^2 printf("\t actual surface supplied is : %.1f ft^2 \n",A2); UD=((Q)/((A2)*(LMTD))); printf("\t actual design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",UD); Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd); printf("\t pressure drop for annulus \n"); De1=(D2-D1); //ft printf("\t De1 is : %.4f ft \n",De1); Rea1=((De1)*(Ga)/mu1); // reynolds number printf("\t reynolds number is : %.2e \n",Rea1); f=(0.0035)+((0.264)/(Rea1^0.42)); // friction factor, using eq.3.47b printf("\t friction factor is : %.4f \n",f); s=0.87; row=62.5*0.87; // from table 6 delFa=((4*f*(Ga^2)*L)/(2*4.18*(10^8)*(row^2)*(De1))); // ft printf("\t delFa is : %.1f ft \n",delFa); V=((Ga)/(3600*row)); //fps printf("\t V is : %.2f fps \n",V); Fl=((3*(V^2))/(2*32.2)); //ft printf("\t Fl is : %.1f ft \n",Fl); delPa=((delFa+Fl)*(row)/144); // psi printf("\t delPa is : %.1f psi \n",delPa); printf("\t allowable delPa is 10 psi \n"); printf("\t pressure drop for inner pipe \n"); f=(0.0035)+((0.264)/(Rep^0.42)); // friction factor, using eq.3.47b printf("\t friction factor is : %.4f \n",f); s=0.88; row=62.5*0.88; // from table 6 delFp=((4*f*(Gp^2)*L)/(2*4.18*(10^8)*(row^2)*(D))); // ft printf("\t delFp is : %.1f ft \n",delFp); delPp=((delFp)*(row)/144); // psi printf("\t delPp is : %.1f psi \n",delPp); printf("\t allowable delPp is 10 psi \n"); //end