printf("\t example 18.4 \n"); T1=1100; // F T2=70; // F t1=T1+460; // R t2=T2+460; // R k=27; // from appendix c=0.14; // from appendix row=490; // from appendix alpha=0.394; theta=4; l=10/12; // ft x=0.173*10^(-8); // stefan constant e=0.7; // emmisivity printf("\t values are approximately mentioned in the book \n"); printf("\t for a \n"); // Assume the temperature is 500°F after 4 hr. The coefficient from plate to air is the· sum of the radiation and convection coefficients hri=(e*x*(t1^4-t2^4))/(T1-T2); printf("\t radiation coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",hri); // eq 4.32 hci=(0.3*(T1-T2)^(1/4)); // eq 10.10 printf("\t convection coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",hci); hti=hri+hci; printf("\t total intial coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",hti); // For the 4-hr coefficient at 500°F hr=2.2; // Btu/(hr)*(ft^2)*(F) hc=1.35; // Btu/(hr)*(ft^2)*(F) ht=hr+hc; printf("\t total intial coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",ht); h=(hti+ht)/2; printf("\t mean coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",h); X=(4*alpha*theta)/(l^2); Y=(h*l)/(2*k); printf("\t X is : %.1f \n",X); printf("\t Y is : %.3f \n",Y); Z=0.42; // Z=f3(X,Y), from fig 18.10 t=T2+((T1-T2)*Z); // eq 18.53 printf("\t t is : %.0f F \n",t); printf("\t for b \n"); Z1=0.43; // Z=f4(X,Y), from fig 18.11 t1=T2+((T1-T2)*Z1); // eq 18.53 printf("\t temperature of center plane is : %.0f F \n",t1); // end