printf("\t example 18.2 \n"); tav=500; // F Ts=1000; t0=100; c=0.12; // Btu/(lb)*(F) k=24; // Btu/(hr)*(ft^2)*(F/ft) row=488; // lb/ft^3 alpha=0.41; // alpha=(k/(c*row)), ft^2/hr x=0.333; // ft theta=4; printf("\t values are approximately mentioned in the book \n"); X=(x/(2*(alpha*theta)^(1/2))); printf("\t X is : %.2f \n",X); Y=0.142; // Y=f1(X) from fig 18.7 t=Ts+(t0-Ts)*(Y); // eq 18.43 printf("\t t si : %.0f F \n",t); q=((k*(Ts-t0))/(3.14*alpha*theta)^(1/2)); // q=(Q/A),from eq 18.47 printf("\t q is : %.0f Btu/(hr)*(ft^2) \n",q); q1=(2*k*(Ts-t0)*(theta/(3.14*alpha))^(1/2)); // q=(Q1/A). eq 18.49 printf("\t The total heat which flowed through a square foot of wall in the 4 hr is : %.1e Btu/ft^2 \n",q1); // end