printf("\t example 17.6 \n"); printf("\t approximate values are mentioned in the book \n"); // basis 1ft^2 ground area //Assumption: 20 per cent of the initial vapor content of the gas enters the water body X1=(1.69/(14.7-1.69))*(18/29); printf("\t X1 : %.4f lb/lb \n",X1); G=1500; w1=G*X1; printf("\t total water in inlet gas : %.2f lb/hr \n",w1); // The inlet gas is at 300F and a 120F dew point. Use 0.25 Btu/(lb)(°F) for the specific heat of nitrogen H1=(0.0807*120)+(0.0807*1025.8)+(0.45*0.0807*(300-120))+(0.25*300); // eq 17.55 printf("\t H1 : %.0f Btu/lb dry air \n",H1); X2=(w1*(1-.2)/G); printf("\t outlet gas humidity : %.5f lb/lb \n",X2); pw=(X2*29*14.7/18)/(1+(X2*29/18)); printf("\t pw : %.3f psia \n",pw); Tw=112.9; // F, from table 7 for above pw // The outlet gas has a temperature of 200°F and a 112.9°F dew point H2=(X2*Tw)+(X2*1029.8)+(X2*0.45*(200-Tw))+(0.25*200); // eq 17.55 printf("\t H2 : %.1f Btu/lb dry air \n",H2); q=G*(H1-H2); printf("\t total heat load : %.2e Btu/hr \n",q); w2=q/(120-85); printf("\t water loading : %.2e lb/hr \n",w2); printf("\t interval 1 \n"); // (Kxa*delV/L)= 0 t0 0.05 nd=0.05; // nd=Kxa*V/L Le=0.93; // fig 17.4 at 300F C=(0.25)+(0.45*X1); printf("\t C : %.3f Btu/(lb)*(F) \n",C); haV=(nd*w2*Le*C); printf("\t haV : %.1f Btu/(hr)*(F) \n",haV); qc=(haV*(300-120)); printf("\t qc : %.2e Btu/hr \n",qc); delT=(qc/(C*G)); printf("\t delT : %.1f F \n",delT); T1=(300-delT); printf("\t T(0.05) : %.1f F \n",T1); delt=(qc/w2); printf("\t delt : %.2f F \n",delt); t1=(120-delt); printf("\t t(0.05) : %.1f F \n",t1); printf("\t interval 2 \n"); // (Kxa*delV/L)= 0.05 to 0.15 nd1=0.1; haV1=(nd1*w2*Le*C); printf("\t haV1 : %.1f Btu/(hr)*(F) \n",haV1); qc1=(haV1*(T1-t1)); printf("\t qc1 : %.1e Btu/hr \n",qc1); delT1=(qc1/(C*G)); printf("\t delT1 : %.1f F \n",delT1); T2=(T1-delT1); printf("\t T(0.15) : %.2f F \n",T2); X3=0.0748; // at 117.6F w3=(nd1*w2*(0.0807-X3)); printf("\t water diffused during interval : %.3f lb/hr \n",w3); w4=(w1-w3); printf("\t water remaining : %.2f lb/hr \n",w4); l1=1027; // Btu/lb, l1= lamda at 117.6F qd=(w3*l1); printf("\t qd : %.0f Btu/hr \n",qd); q1=(qd+qc1); printf("\t q1 : %.0f Btu/hr \n",q1); delt1=(q1/w2); printf("\t delt1 : %.2f F \n",delt1); t2=(t1-delt1); printf("\t t(0.15) : %.1f F \n",t2); X4=0.0640; // at 112.5 X5=(w4/G); printf("\t X(112.5F) : %.4f lb/lb \n",X5); printf("\t interval 3 \n"); // (Kxa*delV/L)= 0.15 to 0.25 nd1=0.1; haV1=(nd1*w2*Le*C); printf("\t haV1 : %.1f Btu/(hr)*(F) \n",haV1); qc2=(haV1*(T2-t2)); printf("\t qc2 : %.2e Btu/hr \n",qc2); delT2=(qc2/(C*G)); printf("\t delT2 : %.1f F \n",delT2); T3=(T2-delT2); printf("\t T(0.25) : %.1f F \n",T3); w5=(nd1*w2*(X5-X4)); printf("\t water diffused during interval : %.3f lb/hr \n",w5); w6=(w4-w5); printf("\t water remaining : %.2f lb/hr \n",w6); l2=1030; // Btu/lb, l1= lamda at 112.5F qd1=(w5*l2); printf("\t qd1 : %.2e Btu/hr \n",qd1); q2=(qd1+qc2); printf("\t q2 : %.3e Btu/hr \n",q2); delt2=(q2/w2); printf("\t delt2 : %.2f F \n",delt2); t3=(t2-delt2); printf("\t t(0.25) : %.1f F \n",t3); X6=0.0533; // at 106.5 X7=(w6/G); printf("\t X(106.5F) : %.4f lb/lb \n",X7); // The calculations of the remaining intervals until a. gas temperature of 200°F is reached are shown in Fig. 17.17 w7=21.92; // total water diffused from table in solution d=(w7/w1)*100; printf("\t calculated diffusion : %.0f \n",d); printf("\t Using some standard low-pressure-drop data \n"); // For G = 1500, extrapolate to L = 2040 on logarithmic coordinates. Kxa = 510. ndt=.54; // from 1st table in solution Kxa=510; // from 2nd table in solution Z=(ndt*w2/Kxa); printf("\t tower height : %.2f ft \n",Z); A=(50000/G); printf("\t cross section : %.1f ft^2 \n",A); // end