printf("\t example 12.5 \n"); printf("\t approximate values are mentioned in the book \n"); T1=130; // inlet hot fluid,F T2=125; // outlet hot fluid,F T3=100; // after subcooling t1=80; // inlet cold fluid,F t3=100; // outlet cold fluid,F W=21000; // lb/hr w=167000; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for pentane \n"); c=0.57; // Btu/(lb)(F) qs=((W)*(c)*(T2-T3)); // Btu/hr printf("\t total heat required for subcooling of pentane is : %.0e Btu/hr \n",qs); HT1=315; // enthalpy at T1, Btu/lb HT2=170; // enthalpy at T2, Btu/lb qc=(W*(HT1-HT2)); // for condensation printf("\t total heat required for condensing of pentane is : %.2e Btu/hr \n",qc); Q=qs+qc; printf("\t total heat required for pentane is : %.2e Btu/hr \n",Q); printf("\t for water \n"); c=1; // Btu/(lb)*(F) Q=((w)*(c)*(t3-t1)); // Btu/hr printf("\t total heat required for water is : %.2e Btu/hr \n",Q); deltw=18.2; printf("\t deltw is : %.1f F \n",deltw); t2=t3-deltw; printf("\t t2 is : %.1f F \n",t2) printf("\t for condensing \n"); delt1=T2-t2; //F delt2=T1-t3; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTDc=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.1f F \n",LMTDc); w1=(qc/LMTDc); printf("\t w1 is : %.2e lb/hr \n",w1); printf("\t subcooling \n"); delt3=T3-t1; //F delt4=T2-t2; // F printf("\t delt1 is : %.0f F \n",delt3); printf("\t delt2 is : %.0f F \n",delt4); LMTDs=((delt4-delt3)/((2.3)*(log10(delt4/delt3)))); printf("\t LMTD is :%.1f F \n",LMTDs); w2=(qs/LMTDs); printf("\t w1 is : %.2e lb/hr \n",w2); delt=(Q/(w1+w2)); printf("\t delt is : % .1f F \n",delt); Tc=((T1)+(T2))/(2); // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.1f F \n",Tc); tc=((t1)+(t3))/(2); // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.0f F \n",tc); printf("\t hot fluid:shell side,pentane \n"); C1=0.198; // for 0.3Ds Ds=25; // in L=16; // ft N=370 a=(C1*Ds^2); printf("\t a is : %.0f in^2 \n",a); N1=((N*a*4)/(3.14*Ds^2)); printf("\t number of submerged tubes are : %.0f \n",N1); Nt=N-N1; printf("\t number of tubes for condensation are : %.0f \n",Nt); Af=(N1/N); printf("\t flooded surface : %.2f \n",Af); printf("\t for condensaton \n"); G1=(W/(L*Nt^(2/3))); // from eq.12.43 printf("\t G1 is : %.1f lb/(hr)*(lin ft) \n",G1); printf("\t cold fluid:inner tube side,water \n"); n=4; // number of passes L=16; //ft at1=0.302; // flow area, in^2 at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48 printf("\t flow area is : %.3f ft^2 \n",at); Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.1e lb/(hr)*(ft^2) \n",Gt); V=(Gt/(3600*62.5)); printf("\t V is : %.2f fps \n",V); mu2=1.98; // lb/(ft)*(hr) D=0.0517; // ft Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Ret); hi=940; //Btu/(hr)*(ft^2)*(F) printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); ID=0.62; // ft OD=0.75; //ft hio=((hi)*(ID/OD)); // using eq.6.5 printf("\t Correct hio to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); ho=251; // Btu/(hr)*(ft^2)*(F), from fig 12.9 printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Uc); Ac=(qc/(Uc*LMTDc)); printf("\t clean surface required for dcondensation : %.0f ft^2 \n",Ac); printf("\t subcooling \n"); ho=50; // Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); Us=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",Us); As=(qs/(Us*LMTDs)); printf("\t clean surface required for desuperheating : %.0f ft^2 \n",As); AC=As+Ac; printf("\t total clean surface : %.0f ft^2 \n",AC); UC=((Us*As)+(Uc*Ac))/(AC); printf("\t weighted clean overall coefficient : %.0f Btu/(hr)*(ft^2)*(F) \n",UC); A=1160; // ft^2 printf("\t total surface area is : %.0f ft^2 \n",A); UD=((Q)/((A)*(delt))); printf("\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD); Rd=((UC-UD)/((UD)*(UC))); // (hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n",Rd); printf("\t pressure drop for annulus \n"); printf("\t condensation \n"); printf("\t It will be necessary to spread the batHes to a spacing of 18in.to compensate for the reduction in crossfiow area due to the flooded subcooling zone. The tube-side pressure drop will be the same as before. Assume bundle flooded to 0.3Ds.\n"); As=0.547; // ft^2 Gs=(W/(As)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.1e lb/(hr)*(ft^2) \n",Gs); De=0.0792; // fig 28 Res=((De)*(Gs)/0.0165); // reynolds number printf("\t reynolds number is : %.2e \n",Res); f=0.00121; // friction factor for reynolds number 193000, using fig.29 s=0.00454; // for reynolds number 193000,using fig.6 Ds=2.08; // ft B=18 phys=1; N=(12*L/B); // number of crosses,using eq.7.43 printf("\t number of crosses are : %.0f \n",N); delPsc=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq.12.47,psi printf("\t delPsc is : %.1f psi \n",delPsc); printf("\t delPss is negligible \n"); printf("\t allowable delPa is 2 psi \n"); //end