printf("\t example 12.2 \n"); printf("\t approximate values are mentioned in the book \n"); T1=244; // inlet hot fluid,F T2=244; // outlet hot fluid,F t1=85; // inlet cold fluid,F t2=120; // outlet cold fluid,F W=60000; // lb/hr w=488000; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for propanol \n"); l=285; // Btu/(lb) Q=((W)*(l)); // Btu/hr printf("\t total heat required for propanol is : %.2e Btu/hr \n",Q); printf("\t for water \n"); c=1; // Btu/(lb)*(F) Q=((w)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for water is : %.2e Btu/hr \n",Q); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.0f F \n",LMTD); Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc); tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.1f F \n",tc); UD1=70; // assume, from table 8 A1=((Q)/((UD1)*(LMTD))); printf("\t A1 is : %.2e ft^2 \n",A1); N2=766; // assuming 4 tube passes, from table 9 a1=0.1963; // ft^2/lin ft L=(A1/(N2*a1)); printf("\t L is : %.1f ft \n",L); A2=(N2*12*a1); // ft^2 printf("\t total surface area is : %.0f ft^2 \n",A2); UD=((Q)/((A2)*(LMTD))); printf("\t correct design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD); printf("\t hot fluid:shell side,propanol \n"); Do=0.0625; // ft G1=(W/(3.14*N2*Do)); // from eq.12.36 printf("\t G1 is : %.0f lb/(hr)*(lin ft) \n",G1); printf("\t cold fluid:inner tube side,water \n"); Nt=766; n=4; // number of passes L=12; //ft at1=0.302; // flow area, in^2 at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48 printf("\t flow area is : %.3f ft^2 \n",at); Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt); V=(Gt/(3600*62.5)); printf("\t V is : %.2f fps \n",V); mu2=1.74; // at 102.5F,lb/(ft)*(hr) D=0.0517; // ft Ret=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.2e \n",Ret); hi=1300; //Btu/(hr)*(ft^2)*(F) printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); ID=0.62; // ft OD=0.75; //ft hio=((hi)*(ID/OD)); // using eq.6.5 printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio); ho=100; // assumption tw=(tc)+(((ho)/(hio+ho))*(Tc-tc)); // from eq.5.31 printf("\t tw is : %.1f F \n",tw); tf=(Tc+tw)/(2); // from eq 12.19 printf("\t tf is : %.0f F \n",tf); kf=0.0945; // Btu/(hr)*(ft^2)*(F/ft), from table 4 sf=0.76; // from table 6 muf=0.65; // cp, from fig 14 ho=102; // Btu/(hr)*(ft^2)*(F), from fig 12.9 printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); printf("\t pressure drop for annulus \n"); ID=31; // in C=0.1875; // clearance B=29; // baffle spacing,in PT=0.937; as=((ID*C*B)/(144*PT)); // flow area,from eq 7.1,ft^2 printf("\t flow area is : %.2f ft^2 \n",as); Gs=(W/as); // mass velocity,from eq 7.2,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs); mu1=0.0242; // lb/(ft)*(hr), fig 15 De=0.0458; // fig 28 Res=((De)*(Gs)/mu1); // reynolds number printf("\t reynolds number is : %.1e \n",Res); f=0.0014; // friction factor for reynolds number 91000, using fig.29 s=0.00381; // for reynolds number 91000,using fig.6 Ds=31/12; // ft phys=1; N=(5); // number of crosses,using eq.7.43 printf("\t number of crosses are : %.0f \n",N); delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq.12.47,psi printf("\t delPs is : %.1f psi \n",delPs); printf("\t allowable delPa is 2 psi \n"); printf("\t pressure drop for inner pipe \n"); f=0.00019; // friction factor for reynolds number 36200, using fig.26 s=1; phyt=1; delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi printf("\t delPt is : %.1f psi \n",delPt); X1=0.2; // X1=((V^2)/(2*g)),using fig.27 delPr=((4*n*X1)/(s)); // using eq.7.46,psi printf("\t delPr is : %.1f psi \n",delPr); delPT=delPt+delPr; // using eq.7.47,psi printf("\t delPT is : %.1f psi \n",delPT); printf("\t allowable delPT is 10 psi \n"); Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,eq 6.38,Btu/(hr)*(ft^2)*(F) printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc); Rd=((Uc-UD)/((UD)*(Uc))); // eq 6.13,(hr)*(ft^2)*(F)/Btu printf("\t actual Rd is : %.5f (hr)*(ft^2)*(F)/Btu \n",Rd); // end