printf("\t example 10.1 \n"); printf("\t approximate values are mentioned in the book \n"); T1=250; // inlet hot fluid,F T2=250; // outlet hot fluid,F t1=95; // inlet cold fluid,F t2=145; // outlet cold fluid,F W=16000; // lb/hr w=410; // lb/hr printf("\t 1.for heat balance \n"); printf("\t for crude \n"); c=0.485; // Btu/(lb)*(F) Q=((W)*(c)*(t2-t1)); // Btu/hr printf("\t total heat required for crude is : %.2e Btu/hr \n",Q); printf("\t for steam \n"); l=945.5; // Btu/(lb) Q=((w)*(l)); // Btu/hr printf("\t total heat required for steam is : %.2e Btu/hr \n",Q); delt1=T2-t1; //F delt2=T1-t2; // F printf("\t delt1 is : %.0f F \n",delt1); printf("\t delt2 is : %.0f F \n",delt2); LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1)))); printf("\t LMTD is :%.0f F \n",LMTD); printf("\t On the assumption that the fluids are mixed between passes, each pass must be solved independently. Since only two passes are present in this exchanger, it is simply a matter of assuming the temperature at the end of the first pass. More than half the heat load must be transferred in the first pass; therefore assume ti at the end of the first pass is 125°F \n"); ti=125; // F tc=((t1)+(ti))/2; // caloric temperature of cold fluid,F printf("\t caloric temperature of cold fluid is : %.0f F \n",tc); printf("\t hot fluid:shell side,steam \n"); ho=(1500); // condensation of steam Btu/(hr)*(ft^2)*(F) printf("\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho); printf("\t cold fluid:inner tube side,crude \n"); Nt=86; n=2; // number of passes L=12; //ft at1=0.594; // flow area, in^2,from table 10 at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48 printf("\t flow area is : %.3f ft^2 \n",at); Gt=(W/(.177)); // mass velocity,lb/(hr)*(ft^2) printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt); mu2=2.95*2.42; // at 145F,lb/(ft)*(hr) D=(0.87/12); // ft Ret1=((D)*(Gt)/mu2); // reynolds number printf("\t reynolds number is : %.0f \n",Ret1); mu3=4.8*2.42; // at 110F,lb/(ft)*(hr) D=(0.87/12); // ft Ret2=((D)*(Gt)/mu3); // reynolds number printf("\t reynolds number is : %.0f \n",Ret2); c=0.485; // Btu/(lb)*(F),at 120F,from fig.2 k=0.0775; // Btu/(hr)*(ft^2)*(F/ft), from table 4 Pr=((c)*(mu3)/k); // prandelt number printf("\t prandelt number is : %.1f \n",Pr); Hi=((1.86)*(k/D)*((Ret2*(D/L)*Pr)^(1/3))); // using eq.6.1,Btu/(hr)*(ft^2)*(F) printf("\t Hi is : %.1f Btu/(hr)*(ft^2)*(F) \n",Hi); muw=1.2*2.42; // lb/(ft)*(hr),at 249F from fig.14 phyt=(mu3/muw)^0.14; printf("\t phyt is : %.1f \n",phyt); // from fig.24 hi=(Hi)*(phyt); // from eq.6.37 printf("\t Correct hi to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi); tp=(tc)+(((ho)/(hi+ho))*(T1-tc)); // from eq.5.31 printf("\t tp is : %.0f F \n",tp); delt=tp-tc; //F printf("\t delt is : %.0f F \n",delt); Ai1=0.228 // internal surface per foot of length,ft Ai=(Nt*L*Ai1/2); // ft^2 printf("\t total surface area is : %.1f ft^2 \n",Ai); delt3=((hi*Ai*delt)/(W*c)); // delt3=ti-t1, F printf("\t delt3 is : %.1f F \n",delt3); ti=t1+delt3; // F printf("\t ti is : %.1f F \n",ti); printf("\t The oil now enters the second pass at 126.9°F \n"); // end