//to find the natural frequencies of the torsional vibration of the system when inertia is neglected and when it is taken into account clc //given g=32.3//ft/s^2 l2=25.5//in d1=2.75//in d2=3.5//in C=12*10^6//modulus of rigidity G=1/0.6//given speed ratio Ib=54//lb in^2 Ic=850//lb in^2 Id=50000//lb in^2 Id1=Id/G^2//15.62 Ia=1500//lb in^2 la=Id1/(Id1+Ia)*66.5 J=%pi*d1^4/32 q=C*J/la//torsional stiffness n=(1/(2*%pi))*(q*g*12/Ia)^(1/2) nf=n*60//for minutes //case b) Ib1=Ib+Ic/(G^2) a=63.15//in; distance of the node from rotor A (given) b=3.661//in; distance of the node from rotor A (given) N1=n*(la/a)^(1/2) N2=n*(la/b)^(1/2) N1f=N1*60//for minutes N2f=N2*60//for minutes printf("\na) The frequency of torsional vibrations n = %.1f per sec or %.f per min\nb) The fundamental frquency = %.1f per sec or %.f per min\n and the two node frequency = %.f per sec or %.f per min",n,nf,N1,N1f,N2,N2f)