//To find the torque exerted on AB to overcome the inertia of the links and the forces which act on the pins B and C clc //given AB=2.5//in BC=7//in CD=4.5//in AD=8//in ED=2.3//from figure N=180 w=N*%pi/30 m=3//lb k=3.5//radius of gyration g=32.2//ft/s^2 QT=1.35//inches from figure alpha=w^2*(QT/CD) Torque=m*(k/12)^2*alpha/g Torque1=Torque*12 Tadd=m*ED//additional torque Tc=Tadd+Torque1//total torque Fc1=Tc/CD //link BC M=5//lb gA=1.8//in fg=w^2*(gA/12) F=M*fg/g OaG=5.6//in Kg=2.9//in GZ=Kg^2/OaG //scaled from figure IB=9//in IC=5.8//in IX=2.49//in IY=1.93//in Fb1=(Fc1*IC+F*IX+M*IY)/IB Tor=Fb1*AB //from force polygon Fc2=1//lb Fb2=15.2//lb Fb=(Fb1^2+Fb2^2)^(1/2) Fc=(Fc1^2+Fc2^2)^(1/2) printf("\nThe torque which must be exerted on AB in order to overcome the inertia of the links = Fb1*AB = %.1f lb.in\nThe total force applied to the link BC \nAt pin C = %.2f lb\nAt pin B = %.1f lb\n",Tor,Fc,Fb)