//Determine the current in parallel branches and supply current clc; clear; Xl=%i*100; // Inductance R=10; // Resistance V=10; Xco=-%i*100; Q=abs(Xl)/R; Z0=Q*abs(Xco); I0=V/Z0; Ic=V/Xco; Il=V/Xl; Pi=V*I0; // Power Input Pc=(I0^2)*10; // Copper Loss // Frequency reduced to fo/2 Xl1=Xl/2; // New Inductive reactance at half the initial frequency Xco1=Xco*2; // New Capacitative reactance at half the initial frequency Z1=R+Xl1; // Net impedance of the branch containing Resistance and inductor Znet= Z1*Xco1/(Xco1+Z1); // Net Impedance of the circuit I1=V/Znet; // Net Current for reduced frequency ti1=atand(imag(I1)/real(I1)); // Phase Angle // Frequncy increased to 2fo Xl2=2*Xl;// New Inductive reactance at double the initial frequency Xco2=Xco/2;// New Capacitative reactance at double the initial frequency Z2=R+Xl2;// Net impedance of the branch containing resistance and inductor Zt=Z2*Xco2/(Z2+Xco2);// Net Impedance of the circuit I2=V/Zt; // Net Current ti2=atand(imag(I2)/real(I2)); printf('a) The Current flowing in the inductor =') disp('mA',Il*1000) printf(' The current flowing in the capacitor =') disp('mA',Ic*1000) printf(' The supply current = %g mA\n \n',I0*1000) printf('b) The current for half the intial frequency = %g/_%g mA\n',abs(I1)*1000,ti1) printf(' The current for double the intial frequency = %g/_%g mA\n',abs(I2)*1000,ti2)