clc; clear; printf("\t\t\tChapter9_example4\n\n\n"); // Determination of (a) no. of exchangers required, (b) the overall coefficient of (all) the exchanger(s), and (c) the pressure drop for each stream. // assuming counterflow arrangement // properties of air at 323 K. from appendix table D1 rou_1= 1.088; // density in kg/m^3 cp_1= 1007; // specific heat in J/(kg*K) v_1= 18.2e-6; // viscosity in m^2/s Pr_1 =0.703; // Prandtl Number kf_1= 0.02814; // thermal conductivity in W/(m.K) a_1 = 0.26e-4; // diffusivity in m^2/s m_1=100; // mass flow rate in kg/hr // temperatures in K t1_air=20+273; t2_air=80+273; // properties of carbon dioxide at [600 + (20 + 273)]/2 = 480 = 500 K. from appendix table D2 rou_2= 1.0732; // density in kg/m^3 cp_2= 1013; // specific heat in J/(kg*K) v_2= 21.67e-6; // viscosity in m^2/s Pr_2 =0.702; // Prandtl Number kf_2= 0.03352; // thermal conductivity in W/(m.K) a_2 = 0.3084e-4; // diffusivity in m^2/s m_2=90; // mass flow rate in kg/hr // temperatures in K T1_CO2=600; // specifications of seamless copper tubing from appendix table F2 ID_a=.098; ID_p=.07384; OD_p=.07938; // Flow Areas A_p=%pi*ID_p^2/4; A_a=%pi*((ID_a)^2-(OD_p)^2)/4; printf("\nThe area of annulus is %.2e sq.m",A_a); printf("\nThe area of inner pipe is %.2e sq.m",A_p); if A_a>A_p then printf("\nAir flows through annulus"); else printf("\nair flows through inner pipe"); end // Heat Balance q_air=(m_1/3600)*(cp_1)*(t2_air-t1_air); printf("\nThe heat transferred is %.2e W",q_air); T2_CO2=T1_CO2-(q_air/(m_2*cp_2/3600)); printf("\nThe low temperature of carbon dioxide is %d K",T2_CO2); // Log-Mean Temperature Difference LMTD_counter=((T1_CO2-t2_air)-(T2_CO2-t1_air))/(log((T1_CO2-t2_air)/(T2_CO2-t1_air))); printf("\nThe LMTD for counter flow configuration is %d degree C",LMTD_counter); // Annulus Equivalent Diameters D_h=ID_a-OD_p; D_e=(ID_a^2-OD_p^2)/(OD_p); printf("\nThe Annulus Equivalent Diameter for friction is %.5f m",D_h); printf("\nThe Annulus Equivalent Diameter for heat transfer is %.4f m",D_e); // Reynolds Numbers Re_1=(m_1/3600)*(ID_p)/(v_1*rou_1*A_p); printf("\nThe Reynolds Number for air is %.2e",Re_1); Re_2=(m_2/3600)*(D_e)/(v_2*rou_2*A_a); printf("\nThe Reynolds Number for carbon dioxide is %.2e",Re_2); // Nusselt numbers Nu_1=0.023*(Re_1)^(4/5)*(Pr_1)^0.3; Nu_2=0.023*(Re_2)^(4/5)*(Pr_2)^0.4; printf("\nThe Nusselt number for air is %.1f",Nu_1); printf("\nThe Nusselt number for carbon dioxide is %.1f",Nu_2); // Convection Coefficients h_1i=Nu_1*kf_1/ID_p; h_1o=h_1i*ID_p/OD_p; h_2=Nu_2*kf_2/D_e; printf("\nThe convective coefficient for air based on inner diameter is %.1f W/(sq.m.K)",h_1i); printf("\nThe convective coefficient for air based on outer diameter is %.1f W/(sq.m.K)",h_1o); printf("\nThe convective coefficient for carbon dioxide is %.1f W/(sq.m.K)",h_2); // Fouling Factors in (m^2.K)/W Rd_air=.0004; Rd_CO2=0.002; // exchanger coefficients Uo=1/((1/h_1o)+(1/h_2)); Uo=1/((1/Uo)+Rd_air+Rd_CO2); printf("\nThe overall exchanger coefficient is %.1f W/(sq.m.K)",Uo); // area required A=q_air/(Uo*LMTD_counter); printf("\nThe area required is %.2f sq.m",A); // surface area of one exchanger is A=%pi*OD*L, so L=(A/(%pi*OD_p)); // length of each exchanger L_available=2; // available exchanger length N=L_available/L; // no. of exchangers printf("\nThe number of exchangers is %d",N); //friction factors fp=0.0245; //friction factor for air fom figure 6.14 corresponding to Reynolds Number calculated above fa=0.033; //friction factor for carbon dioxide fom figure 6.14 corresponding to Reynolds Number calculated above // Velocities V_air=(m_1/3600)/(rou_1*A_p); V_CO2=(m_2/3600)/(rou_2*A_a); printf("\nThe velocity of air is %.2f m/s",V_air); printf("\nThe velocity of carbon dioxide is %.2f m/s",V_CO2); // pressure drops dP_p=(fp*L_available*rou_1*V_air^2)/(ID_p*2); dP_a=((rou_2*V_CO2^2)/2)*((fa*L_available/D_h)+1); printf("\nThe pressure drop for tube side is %.2f Pa",dP_p); printf("\nThe pressure drop for shell side is %d Pa",dP_a); printf("\n\t\t\tSummary of Requested Information\n"); printf("(a) Exchanger required: %d\n(b)Overall exchanger coefficient = %.1f W/(sq.m.K)\n(c)Air pressure drop = %.2f Pa\nDiesel exhaust pressure drop = %d Pa",N,Uo,dP_p,dP_a);