clc; clear; printf("\t\t\tChapter7_example8\n\n\n"); // Estimation of force exerted on the pole // properties of air at given conditions from appendix table D1 rou= 0.0735; // density in Ibm/ft^3 v= 16.88e-5; // viscosity in ft^2/s V=20*5280/3600; // flow velocity in ft/s printf("\nThe flow velocity is %.1f ft/s",V); D=12/12; // diameter of pole in ft L=30;// length of pole in ft gc=32.2; Re_D=V*D/v; // Reynolds Number for flow past the pole printf("\nThe Reynolds Number for flow past the pole is %.2e ",Re_D); Cd_cylinder=1.1; // value of Cd for smooth cylinder from figure 7.22 A_cylinder=D*L; // frontal area of pole printf("\nThe frontal area of pole is %d sq.ft",A_cylinder); Df_cylinder=Cd_cylinder*(1/2)*rou*V^2*A_cylinder/gc; printf("\nThe Drag force exerted on only the pole is %.1f lbf",Df_cylinder); D_square=2/12; // length of square part of pole L_square=4; Re_square=V*D_square/v; // Reynolds Number for square part of pole printf("\nThe Reynolds Number for square part of pole is %.1e",Re_square); Cd_square=2; // Corresponding value of Cd for square part from figure 7.23 A_square=D_square*L_square; // projected frontal area of square part printf("\nThe frontal area of square part of pole is %.3f sq.ft",A_square); Df_square=Cd_square*(1/2)*rou*V^2*A_square/gc; printf("\nThe Drag force exerted on cross piece of the pole is %.2f lbf",Df_square); Df_total=Df_cylinder+Df_square; printf("\nThe total drag force on the pole is %.1f lbf",Df_total);