clc; clear; printf("\t\t\tChapter7_example7\n\n\n"); // Determination of wattage requirement // properties of carbon dioxide at a film temperature of (400+600)/2 = 500 K from appendix table D2 rou= 1.0732; // density in kg/m^3 cp= 1013; // specific heat in J/(kg*K) v= 21.67e-6; // viscosity in m^2/s Pr = 0.702; // Prandtl Number k= 0.03352; // thermal conductivity in W/(m.K) a = 0.3084e-4; // diffusivity in m^2/s V_inf=60; // carbon dioxide velocity in m/s x_cr=(5e5)*v/V_inf; // The transition length in m printf("\nThe transition length is %.1f cm",x_cr*100); w=4; // width of each heater in cm b=.16; // effective heating length in m Tw=600; // temperature of heater surface in K T_inf=400; // temperature of carbon dioxide in K r=pmodulo(x_cr*100,w); n=(x_cr*100+r)/w; // number of heater where transition occurs printf("\nThe transition thus occur at %dth heater",n); m=6; // number of heater strips q=zeros(m+1,1); x=[0.04 0.08 0.12 0.16 0.20 0.24]; for i=1:n-1 // transition occurs at 5th heater, so laminar zone equation is followed till then h(i)=(0.664*k)*(V_inf/v)^0.5*(Pr)^(1/3)/x(i)^0.5; printf("\n\nThe convective coefficient for heater no. %d is %d W/(sq.m.K)",i,h(i)); q(i+1)=h(i)*x(i)*b*(Tw-T_inf); dq(i)=q(i+1)-q(i); printf("\nThe heat transferred by heater no. %d is %d W",i,dq(i)); end // Turbulent zone exists from 5th heater onwards so the following equation is followed Nu=h*x/kf=[0.0359*(Re_L)^(4/5)-830]*(Pr)^(1/3) for i=5:6 Re_L(i)=V_inf*x(i)/v; h(i)=(k/x(i))*[0.0359*(Re_L(i))^(4/5)-830]*(Pr)^(1/3) printf("\n\nThe Reynolds number for heater no. %d is %.2e",i,Re_L(i)); printf("\nThe convective coefficient for heater no. %d is %.1f W/(sq.m.K)",i,h(i)); q(i+1)=h(i)*x(i)*b*(Tw-T_inf); dq(i)=q(i+1)-q(i); printf("\nThe heat transferred by heater no. %d is %d W",i,dq(i)); end