clc; clear; printf("\t\t\tChapter7_example4\n\n\n"); // Determination of the maximum heater-surface temperature for given conditions // fluid properties at (300 degree R + 800 degree R)/2 = 550 degree R=540degree R from Appendix Table D.6 rou= 0.0812; // density in Ibm/ft^3 cp=0.2918; // specific heat BTU/(lbm-degree Rankine) v= 17.07e-5; // viscosity in ft^2/s kf = 0.01546 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) a = 0.8862; // diffusivity in ft^2/hr Pr = 0.709; // Prandtl Number qw=10/(1.5*10.125)*(1/.2918)*144; // The wall flux printf("\nThe wall flux is %d BTU/(hr. sq.ft)",qw); V_inf=20; // velocity in ft/s L=1.5/12; // length in ft Re_L=V_inf*10*L/v; // Reynolds number at plate end printf("\nThe Reynolds number at plate end is %.2e",Re_L); // So the flow is laminar and we can find the wall temperature at plate end as follows T_inf=300; // free stream temperature in degree Rankine Tw=T_inf+(qw*L*10/(kf*0.453*(Re_L)^0.5*(Pr)^(1/3))); printf("\nThe maximum heater surface temperature is %d degree Rankine",Tw);