clc; clear; printf("\t\t\tChapter7_example10\n\n\n"); // Calculation of the pressure drop for the air passing over the tubes and the heat transferred to the air. // properties of air at 70 + 460 = 530 degree R = 540 degree R from appendix table D1 rou= 0.0735; // density in Ibm/cu.ft cp=0.240; // specific heat BTU/(lbm-degree Rankine) v= 16.88e-5; // viscosity in sq.ft/s kf = 0.01516 ; // thermal conductivity in BTU/(hr.ft.degree Rankine) a = 0.859; // diffusivity in sq.ft/hr Pr = 0.708; // Prandtl Number // specifications of 3/4 standard type K copper tubing from appendix table F2 OD=0.875/12; // outer diameter in ft ID=0.06208; // inner diameter in ft A=0.003027; // cross sectional area in sq.ft L=2; sL=1.5/12; sT=1.3/12; V_inf=12; // velocity of air in ft/s V1=(sT*V_inf)/(sT-OD); // velocity at area A1 in ft/s printf("\nVelocity at area A1 is %.1f ft/s",V1); sD=((sL)^2+(sT/2)^2)^0.5; // diagonal pitch in inch printf("\nThe diagonal pitch is %.2f in",sD*12); V2=(sT*V_inf)/(2*(sD-OD)); printf("\nVelocity at area A2 is %.1f ft/s",V2); if V1>V2 then Vmax=V1; else Vmax=V2; end Re_D=Vmax*OD/v; // Reynolds Number printf("\nThe Reynolds number is %.2e ",Re_D); sT_OD=1.3/0.875; sT_sL=1.3/1.5; printf("\nThe values of parameters are sT/Do=%.2f and sT/sL=%.2f",sT_OD,sT_sL); f1=0.35; //value of f1 for above values of sT/Do and Re f2=1.05; //Corresponding value of f2 for above values of sT/sL and Re gc=32.2; N=7; dP=N*f1*f2*(rou*Vmax^2/(2*gc)); printf("\nThe pressure drop is %.2f lbf/ft^2 = %.4f psi",dP, dP/147); sL_Do=sL/OD; C1=0.438; //value of C1 for above values of sT/Do and sL/Do C2=0.97; //value of C2 for above values of sT/Do and sL/Do m=0.565; //value of m for above values of sT/Do and sL/Do hc=kf*1.13*C1*C2*(Re_D)^m*(Pr)^(1/3)/OD; // The convection coefficient printf("\nThe convection coefficient is %.1f BTU/(hr.sq.ft.degree Rankine)",hc); As=70*%pi*OD*L; // outside surface area of 70 tubes printf("\nThe outside surface area of 70 tubes is %.1f sq.ft",As); Tw=200; // outside surface temeperature in degree F T_inf=70; // air temperature in degree F q=hc*As*(Tw-T_inf);// heat transferred printf("\nThe heat transferred is %.2e BTU/hr",q);