clc; clear; printf("\t\t\tChapter6_example6\n\n\n"); // determibation of heat gained // air properties to be calculated at T=(72+45)/2=58.5 degree Fahrenheit // properties at T=58.5 degree fahrenheit from appendix table D1 p = 0.077; // density in lbm/ft^3 cp = 0.240; // specific heat in BTU/(lbm.degree Rankine) v = 15.28e-5; // viscosity in ft^2/s kf = 0.0146; // thermal conductivity in BTU/(hr.ft."R) a = 0.776; // diffusivity in ft^2/hr Pr = 0.711; // prandtl number D=7/12; // diameter in ft L=40; // length in ft Tbo=72; // outlet temperature in degree Fahrenheit Tbi=45; // inlet temperature in degree Fahrenheit A=%pi*(D^2)/4; // cross sectional area of duct in ft^2 // density at outlet temperature in lbm/ft^3 rou_o=.0748; V=10; // average velocity in ft/s mass_flow=rou_o*A*V; printf("\nThe mass flow rate is %.1f lbm/s",mass_flow); // average velocity evaluated by using the average bulk temperature V_avg=mass_flow/(p*A); printf("\nThe average velocity evaluated by using the average bulk temperature is %.2f ft/s",V_avg); Re=(V_avg*D)/v; printf("\nThe Reynolds number for the flow is %.3e ",Re); // the flow is in turbulent regime q=mass_flow*cp*(Tbo-Tbi); printf("\nThe heat gained by air is %.3f BTU",q); hc=1; // convection coefficient between the outside duct wall and the attic air in BTU/(hr. sq.ft.degree Rankine). T_inf=105; // The temperature of attic air surrounding the duct in degree Fahrenheit hz=(0.023*Re^(4/5)*Pr^0.4)*kf/D; // The local coefficient at the duct end is %.2f BTU/(hr. sq.ft.degree Rankine) printf("\nThe local coefficient at the duct end is %.2f BTU/(hr. sq.ft.degree Rankine)",hz); qw=(T_inf-Tbo)/((1/hc)+(1/hz)); // wall flux in BTU/(hr. sq.ft.degree Rankine) printf("\nThe wall flux is %.1f BTU/(hr. sq.ft.degree Rankine)",qw); Two=qw*(1/hz)+Tbo; // The wall temperature at exit in degree Fahrenheit printf("\nThe wall temperature at exit is %.1f degree Fahrenheit",Two);