clc; clear; printf("\t\t\tChapter6_example3\n\n\n"); // Determination of the variation of wall temperature with length up to the point where the flow becomes fully developed. // properties of milk kf=0.6; // thermal conductivity in W/(m-K) cp=3.85*1000; // specific heat in J/(kg*K) rou=1030; // density in kg/m^3 mu=2.12e3; // viscosity in N s/m^2 // specifications of 1/2 standard type K tubing from appendix table F2 OD=1.588/100; // outer diameter in m ID=1.340/100; // inner diameter in m A=1.410e-4 // cross sectional area in m^2 rou=1030; V=0.1; mu=2.12e-3 // determination of flow regime Re=rou*V*ID/(mu); printf("\nThe Reynolds Number is %d",Re); // The flow being laminar, the hydrodynamic entry length is calculated as follows ze=0.05*ID*Re; printf("\nThe hydrodynamic entry length is %.1f cm",ze*100); Tbo=71.7; // final temperature in degree celsius Tbi=20; // initial temperature in degree celsius L=6; // heating length in m qw=rou*V*ID*cp*(Tbo-Tbi)/(4*L); printf("\nThe heat flux is %d W/sq.m",qw); q=qw*%pi*ID*L; printf("\nThe power required is %.1f W",q); printf("\nA 3000 W heater would suffice"); Pr=(cp*mu)/kf; // Prandtl Number printf("\nThe Prandtl Number is %.1f",Pr); zf=0.05*ID*Re*Pr; printf("\nThe length required for flow to be thermally developed is %.1f m",zf); // calculations of wall temperature of the tube reciprocal_Gz=[0.002 0.004 0.01 0.04 0.05];// values of 1/Gz taken [n m]=size(reciprocal_Gz); Nu=[12 10 7.5 5.2 4.5]; //Enter the corresponding value of Nusselts Number from figure 6.8 for i=1:m z(i)=ID*Re*Pr*reciprocal_Gz(i); h(i)=kf*Nu(i)/ID; Tbz(i)=20+(8.617*z(i)); Twz(i)=Tbz(i)+(11447/h(i)); end printf("\nSummary of Calculations to Find the Wall Temperature of the Tube"); printf("\n\t1/Gz\t\tNu\t\tz (m)\t\th W/(sq.m.K)\t\tTbz (degree celsius)\t\tTwz (degree celsius)"); for i=1:m printf("\n\t%.3f\t\t%.1f\t\t%.3f\t\t%d\t\t\t%.1f\t\t\t\t%.1f",reciprocal_Gz(i),Nu(i),z(i),h(i),Tbz(i),Twz(i)); end subplot(211); plot(z,Tbz,'r--d',z,Twz,'r-'); // our first figure a1 = gca(); h1=legend(["Tbz";"Twz"]); subplot(212) plot(z,h, 'o--'); // our second figure hl=legend(['h'],2); title('Variation of temperature and local convection coefficient with axial distance for the constant- wall-flux tube'); a2 = gca(); a2.axes_visible = ["off", "on","on"]; a2.y_location ="right"; a1.axes_bounds=[0 0 1 1]; // modify the first figure to occupy the whole area a2.axes_bounds=[0 0 1 1]; // modify the second figure to occupy the whole area too a1.data_bounds=[0,0;6,140]; a2.data_bounds=[0,0;6,700]; a1.x_ticks = tlist(["ticks", "locations", "labels"], (0:6)', ["0";"1";"2";"3";"4";"5";"6"]); a1.x_label a1.y_label x_label=a1.x_label; x_label.text=" z,m" a2.x_label a2.y_label y_label=a1.y_label; y_label.text="T, degree celsius" y_label=a2.y_label; y_label.text="h, W/(sq.m.K)" xgrid(1); a2.filled = "off";