clc; clear; printf("\t\t\tChapter2_example5\n\n\n"); // determination of the heat gain per unit length k1=231; // thermal conductivity of copper in BTU/(hr.ft.degree Rankine)from appendix table B1 k2=0.02; // thermal conductivity of insuLtion in BTU/(hr.ft.degree Rankine) // Specifications of 1 standard type M copper tubing from appendix table F2 are as follows D2=1.125/12; // outer diameter in ft D1=0.08792; // inner diameter in ft R2=D2/2;// outer radius printf("\nOuter radius is %.4f ft",R2); R1=D1/2; // inner radius printf("\nOuter radius is %.3f ft",R1); t=0.5/12; // wall thickness of insulation in ft R3=R2+t; printf("\nRadius including thickness is %.4f ft",R3); LRk1=(log(R2/R1))/(2*3.14*k1); // product of length and copper layer resistance printf("\nProduct of length and copper layer resistance is: %.1e",LRk1); LRk2=(log(R3/R2))/(2*3.14*k2); // product of length and insulation layer resistance printf("\nProduct of length and insulation layer resistance is: %.2f",LRk2); T1=40; // temperature of inside wall of tubing in degree fahrenheit T3=70; // temperature of surface temperature of insulation degree fahrenheit q_per_L=(T1-T3)/(LRk1+LRk2); // heat transferred per unit length in BTU/(hr.ft) printf("\nThe heat transferred per unit length is %.2f BTU/(hr.ft)",q_per_L);