clc; clear; printf("\t\t\tChapter2_example2\n\n\n"); // determination of heat transfer through composite wall for materials in parallel // values of thermal conductivities in W/(m.K) from appendix table B3 k1=0.45;// thermal conductivity of brick k2a=0.15; // thermal conductivity of pine k3=0.814; // thermal conductivity of plaster board k2b=0.025; // thermal conductivity of air from appendix table D1 // Areas needed fpor evaluating heat transfer in sq.m A1=0.41*3; // cross sectional area of brick layer A2a=0.038*3; // cross sectional area of wall stud A2b=(41-3.8)*0.01*3; // cross sectional area of air layer A3=0.41*3; // cross sectional area of plastic layer dx1=0.1; // thickness of brick layer in m dx2=0.089; // thickness of wall stud and air layer in m dx3=0.013; // thickness of plastic layer in m R1=dx1/(k1*A1); // Resistance of brick layer in K/W R2=dx2/(k2a*A2a+k2b*A2b); // Resistance of wall stud and air layer in K/W R3=dx3/(k3*A3); // Resistance of plastic layer in K/W printf("\nResistance of brick layer is %.3f K/W",R1); printf("\nResistance of wall stud and air layer is %.2f K/W",R2); printf("\nResistance of plastic layer is %.3f K/W",R3); T1=25; // temperature of inside wall in degree celsius T0=0; // temperature of outside wall in degree celsius qx=(T1-T0)/(R1+R2+R3); // heat transfer through the composite wall in W printf("\nHeat transfer through the composite wall is %.1f W",qx);