clc; clear; printf("\t\t\tChapter12_example6\n\n\n"); // Determination of the heat that must be supplied to each of the isothermal surfaces, and also the temperature of the insulated surface. // we can apply the equations as follows // q1=sigma*A1*[(T1^4-T2^4)F12+(T1^4-T3^4)F13]..... (1) // q2=sigma*A2*[(T2^4-T1^4)F21+(T2^4-T3^4)F23]..... (2) // q3=sigma*A3*[(T3^4-T1^4)F31+(T3^4-T2^4)F32]..... (3) // given data: T1=1000; T3=500; q2=0; F12=1/2; F13=1/2; F21=1/2; F23=1/2; F31=1/2; F32=1/2; T2=[(T1^4+T3^4)/2]^(1/4); // using equation (2) printf("\nThe temperature T2=%.1f degree R",T2); sigma=0.1714e-8; // Stefan-Boltzmann constant q1_A1=sigma*[(T1^4-T2^4)*F12+(T1^4-T3^4)*F13]; // using equation (1) printf("\nThe heat flux through area A1 is %d BTU/(hr.sq.ft)",q1_A1); q3_A3=sigma*[(T3^4-T1^4)*F31+(T3^4-T2^4)*F32]; // using equation (3) printf("\nThe heat flux through area A3 is %d BTU/(hr.sq.ft)",q3_A3); printf("\nThe results are logical in that the heat entering the system (the oven itself) must equal that which leaves under steady-state conditions.");