clear; clc; // Stoichiometry // Chapter 7 // Combustion // Example 7.6 // Page 452 printf("Example 7.6, Page 452 \n \n"); // solution // basis 100 kg of RFO O2req = 9.786 //kmol N2req = (79/21)*O2req //kmol AIRreq = O2req+N2req //kmol rAIRreq = AIRreq*29/100 AIRspld = AIRreq*1.25 rAIRspld = AIRspld/100 // using table 7.11 and 7.12 xSO2 = .07/(55.925+5.695) // kmol SO2/kmol wet gas vSO2 = xSO2*10^6 // ppm mSO2 = 4.48*10^6/(1696.14+102.51) // at 523.15 K and 100.7 kPa V = [(55.925+5.695)*8.314*523.15]/100.7 // m^3 cSO2 = (4.48*10^6)/V // mg/m^3 //from fig 7.3 dp = 424.4 //K printf("(a) \n \n Theoretical air required = "+string(rAIRreq)+" kg/kg fuel. \n \n \n(b) \n \n Actual dry air supplied = "+string(rAIRspld)+" kg/kg fuel. \n \n \n(c) \n \n Concentration of SO2 = "+string(mSO2)+" mg/kg. \n \n \n(d) \n \n Concentration of SO2 = "+string(vSO2)+" ppm vol/vol. \n \n \n(e) \n \n Concentration of SO2 if gases are discharged at 523.15K and100.7kPa = "+string(cSO2)+" mg/m^3. \n \n \n(f) \n \n Dew Point of flue gas = "+string(dp)+" K.")