clear; clc; // Stoichiometry // Chapter 7 // Combustion // Example 7.13 // Page 479 printf("Example 7.13, Page 479 \n \n"); // solution // solving by alternate method on page 483 // basis 100 kmol of dry producer gas // using tables 7.38 and 7.39 fi7 = 6469.67*(833.15-298.15)*(27650/2672) // kJ/h // heat output basis 1 kg of steam // referring Appendix IV H4 = 675.47-272.03 // kJ/kg Ts = 463 // K h = 806.69 // kJ/kg lambdav = 1977.4 // kJ/kg Hss = 2784.1 // kJ/kg at Ts i = 3045.6 // kJ/kg H6 = i-Hss fi4 = H4*7100 // kJ/h fi5 = (Hss-675.47)*7100 // kJ/h fi6 = H6*7100 // kJ/h recovery = fi4+fi5+fi6 BOILERcapacity = recovery*3600/2256.9 // kg/h fi8 = 6125.47*(478.15-298.15)*(27650/2672) // kJ/h hloss = fi7-fi4-fi5-fi6-fi8 /// kJ/h printf(" Heat Balance of Waste Heat Boiler \n \n \n kJ/h \n Heat Output \n Steam rising \n Economiser "+string(fi4)+" \n Steam generator "+string(fi5)+" \n Super heater "+string(fi6)+" \n \n Heat loss in flue gases "+string(fi8)+" \n Unaccounted heat loss "+string(hloss)+"")