clear; clc; // Stoichiometry // Chapter 4 // Material Balances involving Chemical Reaction // Example 4.8 // Page 124 printf("Example 4.8, Page 124 \n \n"); // solution n = 100//[kmol] SO3 free gas basis n1 = 16.5 //[kmol] SO2 n2 = 3 //[kmol] O2 n3 = 80.5 //[kmol] N2 // S + O2 = SO2 // S + 3/2 O2 = SO3 n4 = (21/79)*80.5 //[kmol] O2 supplied n5 = n4-n1-n2 // [kmol] Unaccounted O2 // O2 used in 2nd eq is m5 n6 = (2/3)*n5 //[kmol] SO3 produced n7 = n1+n6 // sulphur burnt m7 = n7*32 //[kg] f1 = n6/n7 // fraction of SO3 burnt // O2 req. for complete combustion of S = n7 n8 = n4-n7 //[kmol] excess O2 p1 = n8*100/n7 // %age of excess air n9 = n4+n3 //[kmol/s] air supplied F1 = n9*.3/n7 // air supply rate v = 22.414*(303.15/273.15)*(101.325/100) //[m^3/kmol] sp. vol of air V1 = F1*v //[m^3/s] flow rate of fresh air n10 = n+n7 //[kmol] total gas from burner n11 = n10*.3/m7 // [kmol/s] gas req. for .3 kg/s S V2 = 220414*1073.15*n11/273.15 // flowrate of burner gases printf("(a) \n \n The fraction of S burnt = "+string(f1)+" \n \n \n(b) \n \n percentage of excess air over the amount req. for S oxidising to SO2 = "+string(p1)+" \n \n \n(c) \n \n volume of dry air = "+string(V1)+" m^3/s \n \n \n(d) \n \n volume of burner gases = "+string(V2)+" m^3/s.")