// Display mode mode(0); // Display warning for floating point exception ieee(1); clc; disp("Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.5 "); //''Top surface temp in degree C'' Tt = 20; //''Body temp in degree K'' TtK = Tt+273; //''Bottom temp in degree C'' Tb = 100; //''Ambient temp in degree K'' TbK = Tb+273; //''Average temp = (Bottom Temperature + top Temperature)/2'' //''average temp in degree K'' T = (TbK+TtK)/2; //''Value of coefficient of expansion at this temp in degree K inverse'' B = 0.000518; //''Value of Prandtl number at this temp'' Pr = 3.02; //''Value of kinematic viscosity at this temp in m2/s'' v = 0.000000478; //''acceleration due to gravity in m/s2'' g = 9.8; //''temperature diff. between body and ambient in degree K'' deltaT = TbK-TtK; //''depth of water in m'' h = 0.08; //''Therefore using Rayleigh number = ((Pr*g*B*deltaT*h^3)/v^2)'' Ra = ((((Pr*g)*B)*deltaT)*(h^3))/(v^2); //''From Eq. (5.30b) on page 318, we find'' //Nusselt number Nu = 79.3; //''Value of thermal conductivity at this film temp in W/m-K'' k = 0.657; //''Using Nu = hc*d/k, we get heat transfer coefficient in W/m2-K'' hc = (Nu*k)/h; //''diameter of pan in m'' d = 0.15; //''area = pi*d*d/4'' a = ((%pi*d)*d)/4; disp("The rate of heat loss in W is given by hc*(A)*deltaT") //heat loss in W q = (hc*deltaT)*a