// Display mode mode(0); // Display warning for floating point exception ieee(1); clc; disp("Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 5 Example # 5.1 "); // ''Body temp in degree C'' Tb = 127; //''Body temp in degree K'' TbK = Tb+273; //''Ambient temp in degree C'' Ta = 27; //''Ambient temp in degree K'' TaK = Ta+273; //''Film temperature = (Body Temperature + Ambient Temperature)/2'' //''Film temp in degree K'' TfK = (TbK+TaK)/2; //''Value of coefficient of expansion at this film temp in degree K inverse'' B = 1/TfK; //''Value of Prandtl number at this film temp'' Pr = 0.71; //''Value of kinematic viscosity at this film temp in m2/s'' v = 0.0000212; //''Value of thermal conductivity at this film temp in W/m-K'' k = 0.0291; //''acceleration due to gravity in m/s2'' g = 9.81; //''temperature diff. between body and ambient in degree K'' deltaT = TbK-TaK; //''diameter of heater wire in m'' d = 0.001; //''Therefore using Rayleigh number = ((Pr*g*B*deltaT*d^3)/v^2)'' Ra = ((((Pr*g)*B)*deltaT)*(d^3))/(v^2); //''From Fig. 5.3 on Page 303, we get'' //''log(Nu) = 0.12, where Nu is nusselt number, therefore'' Nu = 1.32; //''Using Nu = hc*d/k, we get heat transfer coefficient in W/m2-K'' hc = (Nu*k)/d; disp("The rate of heat loss per meter length in air in W/m is given by hc*(A/l)*deltaT") //heat loss per meter length in air in W/m q = ((hc*deltaT)*%pi)*d //''For Co2, we evaluate the properties at film temperature'' //''Following are the values of dimensionless numbers so obtained'' //''Rayleigh number, Ra=16.90'' //''Nusselt number, Nu=1.62'' //''Using Nu = hc*d/k, we get'' //''hc = 33.2 W/m2-K'' disp("The rate of heat loss per meter length in CO2 is given by hc*(A/l)*deltaT") disp("q = 10.4 W/m") disp(" Discussion - For same area and temperature difference: ") disp(" Heat transfer by convection will be more, if heat transfer coeff. is high")