clc;funcprot(0);//EXAMPLE 21.3 // Initialisation of Variables p1=1;.........//Pressure of air while entering the turbine in bar t1=300;........//Temperature of air entering the turbine in K p2=6.2;.........//Pressure of air after compression in bar etac=0.88;....//Efficiency of compressor etat=0.9;.....//Efficiency of turbine far=0.017;........//Fuel air ratio ga=1.4;........//Ratio of specific heats for compression gae=1.333;........//Ratio of specific heats for expansion cp=1.147;.............//Specific heat at constant pressure in kJ/kgK during expansion cpc=1.005;.............//Specific heat at constant pressure in kJ/kgK during compression C=44186;.............//Calorific value of fuel in kJ/kg //Calculations t2=t1*((p2/p1)^((ga-1)/ga));...............//Ideal temperature of air after compression in K t21=((t2-t1)/etac)+t1;..............//Actual temperature of air after compression in K t3=(((C*far)/((far+1)*cpc))+t21);..............//Temperature before expansion in turbine in K p4=p1;p3=p2;t4=t3*((p4/p3)^((gae-1)/gae));............//Ideal temperature after expansion in turbine in K t41=t3-(etat*(t3-t4));.................//Actual temperature after expansion in turbine in K wt=(cp*(t3-t41));........//Work done by turbine in kJ/kg of air wc=round(1*cpc*(t21-t1));.................//Work done by compression in kJ/kg of air wnet=wt-wc;..........//Net work done in kJ/kg qs=(far)*C;................//Heat supplied in kJ/kg of air etath=wnet/qs;................//Thermal efficiency disp(etath*100,"Thermal efficiency in %:")