clear; clc; //Example 3.14 R1=56; R2=12.2; Rc=2; Re=.4; Vcc=10; Vbe=0.7; b=100; //fig.3.53(b) Rth=R2*R1/(R1+R2); printf('\nThevenin rquivalent resistance=%0.1f KOhm\n',Rth) Vth=(R2/(R1+R2))*Vcc; printf('\nThevenin equivalent voltage=%0.2f V\n',Vth) Ibq=(Vth-Vbe)/(Rth+(1+b)*Re); printf('\nbase current=%f mA\n',Ibq) Icq=b*Ibq; printf('\ncollector current=%.3f mA\n',Icq) Ieq=(1+b)*Ibq; printf('\nemitter current=%.2f mA\n',Ieq) Vceq=Vcc-Icq*Rc-Ieq*Re; printf('\ncollector emitter voltage=%.3f V\n',Vceq) b=[50,100,150] for x=b Ibq=(Vth-Vbe)/(Rth+(1+x)*Re); disp("Ibeq,Iceq,Ieq,Vceq") disp(Ibq) Icq=x*Ibq; disp(Icq) Ieq=(1+x)*Ibq; disp(Ieq) Vceq=Vcc-Icq*Rc-Ieq*Re; disp(Vceq) disp("") end