clc; // Mo=r_BO * F_B relation 3.7 from section 3.5 r_BO=[0,7,0];//m //F_B=T_AB+T_BC; N , mT_AB=555;//N, Tension in Cable AB mT_BC=660;//N, Tension in cable AC CA=[0.3,0, 0.08];//m, vector AC reprecsented in rectangular component //lambda=CD/norm(CD)-m, Unit vector along CD //F=f*lambda;//m, Force BA=[-0.75,-7,6];//m, Position vector BA resolved into rectangular component BC=[4.25,-7,1];//m,Position vector BC resolved into rectangular component lambda_BA=BA/norm(BA);//m, Unit vector along BA T_AB=mT_AB*lambda_BA;//m, Force along cable AB lambda_BC=BC/norm(BC);//m, Unit vector along Bc T_BC=mT_BC*lambda_BC;//m, Force along cable BC F_B=T_AB+T_BC;// N // M_A=r_CA * F relation 3.7 from section 3.5 //i=1; j=1; k=1; Unit vectors along X, Y and Z direction respectively // Componenets of moment M_A along X,Y and Z direction respectively M_Ax=det([r_BO(2),r_BO(3); F_B(2), F_B(3)]);//N.m M_Ay=-det([r_BO(1),r_BO(3) ; F_B(1),F_B(3)]);//N.m M_Az=det([r_BO(1),r_BO(2) ;F_B(1), F_B(2)]);// N.m printf("Answer can be written as M_B = %.2f N.m i + %.2f N.m j + %.2f N.m k \n",M_Ax,M_Ay,M_Az);