//Example 3.6 clc disp("Step 1: Identify topology") disp(" The feedback voltage is applied across R_e1 = 1.5 k-ohm, which is in series with input signal. Hence feedback is voltage series feedback") disp("") disp("Step 2 and step 3: Find input and output circuit") disp(" To find input circuit, set Vo = 0, which gives parallel combination of R_e1 with R_f at E1 as shown in fig.3.47. To find ouput circuit, set I_i = 0 by opening the input node, E1 at emitter of Q1, which gives the series combination of R_f and R_e1 across the output. The resultant circuit is shown in fig.3.47") disp("") disp("Step 4: Find the open loop voltage gain (Av)") rl2=(2.2*57.5)/(2.2+57.5) // in k-ohm format(6) disp(rl2," R_L2(in k-ohm) = R_c2 || (Rf + R_e1) =") disp("Since hoe*R_L2 = 10^-6*2.119 k-ohm = 0.002119 is less than 0.1 we use approximate analysis.") disp(" A_i2 = -h_fe = -200") disp(" R_i2 = hie = 2 k-ohm") av2=(-200*2.119)/2 disp(av2," A_v2 = A_i2*R_L2 / R_i2 =") rl1=(120*2)/(122) // in k-ohm disp(rl1," R_L1(in k-ohm) = R_C1 || R_i2 =") disp("Since hoe*R_L1 = 10^-6*1.967 = 0.001967 is less than 0.1 we use approximate analysis.") disp(" A_i1 = -hfe = -200") ri1=2+(201*((1.5*56)/(57.5))) // in k-ohm format(7) disp(ri1," R_i1(in k-ohm) = hie + (1+hfe)*Re =") av1=(-200*1.967)/295.63 format(5) disp(av1,"Therefore, A_v1 = A_i1*R_L1 / R_i1 =") disp("The overall gain without feedback is") av=-1.33*-211.9 format(7) disp(av," Av = A_v1 * A_v2 =") disp("") disp("Step 5: Calculate beta") beta=1.5/57.5 format(6) disp(beta," beta = Vf / Vo =") disp("") disp("Step 6: calculate D, A_vf, R_if, R_of") d=1+(0.026*281.82) disp(d," D = 1 + Av*beta =") avf=281.82/8.327 disp(avf,"Therefore, A_vf = Av / D =") ri=(295.63*150)/(295.63+150) // in k-ohm format(5) disp(ri," Ri(in k-ohm) = R_i1 || R =") rif=99.5*8.327 // in k-ohm format(7) disp(rif," R_if(in k-ohm) = Ri *D =") disp(" Ro = 1/hoe = 1 M-ohm") rof=((1*10^6)/8.327)*10^-3 // in k-ohm format(4) disp(rof," R_of(in k-ohm) = Ro / D =") ro=(1000*2.119)/(2.119+1000) // in k-ohm format(7) disp(ro," R''o(in k-ohm) = Ro || R_c2 || (Rf+R_e1) = Ro || R_L2 =") rof=(2.1145*10^3)/8.327 // in ohm format(4) disp(rof," R''_of(in ohm) = R''o / D =")