//Example 3.5 clc disp("Step 1: Identity topology") disp(" The feedback voltage is applied across R1 (100 ohm), which is in series with input signal. Hence feedback is voltage series feedback.") disp("") disp("Step 2 and Step 3: Find input and output circuit") disp(" To find input circuit, set Vo = 0, which gives parallel combination of R1 with R2 at E1 as shown in the fig.3.45. To find output circuit, set Ii = 0 by opening the input node, E1 at emitter of Q1, which gives the series combination of R2 and R1 across the output. The resultant circuit is shown in fig.3.45") disp("") disp("Step 4: Find the open loop voltage gain (Av)") rl2=(4.7*4.8)/(4.7+4.8) // in k-ohm format(5) disp(rl2," R_L2(in k-ohm) =") disp("Since h_oe = h_re = 0 we can use approximate analysis") disp(" A_i2 = -hfe = -50") disp(" R_i2 = hie = 1.1 k-ohm") av2=(-50*2.37)/1.1 format(7) disp(av2," A_v2 = A_i2*R_L2 / R_i2 =") rl1=(10*47*33*1.1)/((47*33*1.1)+(10*33*1.1)+(10*47*1.1)+(10*47*33)) // in ohm format(5) disp(rl1*10^3," R_L1(in ohm) =") disp(" A_i1 = -hfe = -50") ri1=1.1+(51*((0.1*4.7)/(4.8))) // in k-ohm format(6) disp(ri1," R_i1(in k-ohm) = hie + (1+hfe)*Re =") av1=(-50*942)/(6.093*10^3) format(5) disp(av1," A_v1 = A_i1*R_L1 / R_i1 =") av=-7.73*-107.73 format(7) disp(av,"Therefore, A_v = A_v1 * A_v2 =") disp("") disp("Step 5: Calculate beta and D") disp(" beta = R1 / R1+R2 = 1/48") d=1+(832.75/48) // in ohm format(6) disp(d," D(in ohm) = 1 + A*beta =") disp("") disp("Step 5: Calculate A_vf, R_of and R_if") avf=832.75/18.35 disp(avf," A_vf = A_v / D =") rif=6.093*18.35 // in k-ohm disp(rif," R_if(in k-ohm) = R_i1 * D =") rof=(2.37*10^3)/18.35 // in ohm format(7) disp(rof," R_of(in ohm) = R_o / D =")