clear; clc; R=10.4;L=3.67*(10^-3);G=0.8*(10^-6);C=0.00835*(10^-6);w=5000;r=7.3;l=246*(10^-3); s=7.88; Rc=R+(r/s); Lc=L+(l/s); Z=fix((Rc+(%i*w*Lc))*100)/100; Y=G+(%i*w*C); Zo=sqrt(Z/Y); A=real(Zo); B=imag(Zo); P=sqrt(Z*Y); a=real(P); b=imag(P); Vp=w/b; phi=(round(atan(imag(Z),real(Z))*180*10/%pi)/10)-round(atan(imag(Y),real(Y))*180*10/%pi)/10; printf("(i)Using exact method Zo = %f /_ %f ohms\n",round(abs(Zo)),phi); printf("\t\t\ta = %f neper/km\n",round(a*10^4)/10^4); printf("\t\t\tVp = %f * 10^4 km/sec\n",round(Vp*10^-2)/10^2); Zo1=sqrt(Lc/C); printf("(ii)Using approximate methos Zo = %f ohms\n",round(Zo1)); al=((Rc/2)*sqrt(C/Lc))+((G/2)*sqrt(Lc/C)); printf("\t\t\ta = %f neper/km\n",round(al*10^5)/10^5); b1=w*(sqrt(Lc*C)); Vp1=1/(sqrt(Lc*C)); printf("\t\t\tVp = %f * 10^4 km/sec",round(Vp1*10^-2)/10^2);