// Electric Machinery and Transformers // Irving L kosow // Prentice Hall of India // 2nd editiom // Chapter 8: AC DYNAMO TORQUE RELATIONS - SYNCHRONOUS MOTORS // Example 8-6 clear; clc; close; // Clear the work space and console. // Given data as per Example 8-4 // Y-connected synchronous dynamo P = 2 ; // No. of poles hp = 1000 ; // power rating of the synchronous motor in hp V_L = 6000 ; // Line voltage in volt f = 60 ; // Frequency in Hz R_a = 0.52 ; // Effective armature resistance in ohm X_s = 4.2 ; // Synchronous reactance in ohm P_t = 811 ; // Input power in kW PF = 0.8 ; // Power factor leading // Calculated values from Example 8-4 E_gp = 3687 ; // Generated voltage/phase in volt I_a = 97.55 ; // Phase armature current in A phi = (42.45 - 0); // Phase angle between E_gp and I_a in degrees // where 42.45 and 0 are phase angles of E_gp and I_a in degrees respectively. // Calculations // case a P_p = E_gp * I_a * cosd(phi) / 1000; // Mechanical power developed per phase in kW P_t_a = 3 * P_p ; // Total mechanical power developed in kW // case b P_t_b = P_t_a / 0.746 ; // Internal power developed in hp at rated load // case c S = 120 * f / P ; // Speed of the motor in rpm T_int = ( P_t_b * 5252 ) / S ; // Internal torque developed in lb-ft // case d T_ext = ( hp * 5252 ) / 3600 ; // External torque developed in lb-ft eta = (T_ext / T_int) * 100 ; // Motor efficiency in percent // Display the results disp("Example 8-6 Solution : "); printf(" \n a: Similar to a dc motor, the mechanical power developed in the armature"); printf(" \n is the product of the induced EMF per phase, the armature current"); printf(" \n per phase, and the cosine of the angle between them.\n"); printf(" \n P_p = %.3f kW \n P_t = %.1f kW \n", P_p, P_t_a ); printf(" \n b: P_t = %.1f hp \n ", P_t_b ); printf(" \n c: T_int = %.f lb-ft \n ", T_int ); printf(" \n d: T_ext = %d lb-ft \n", T_ext ); printf(" \n Motor Efficiency,\n eta = %.1f percent ", eta );