// Electric Machinery and Transformers // Irving L kosow // Prentice Hall of India // 2nd editiom // Chapter 8: AC DYNAMO TORQUE RELATIONS - SYNCHRONOUS MOTORS // Example 8-5 clear; clc; close; // Clear the work space and console. // Given data // Y-connected synchronous dynamo P = 2 ; // No. of poles hp = 1000 ; // power rating of the synchronous motor in hp V_L = 6000 ; // Line voltage in volt f = 60 ; // Frequency in Hz R_a = 0.52 ; // Effective armature resistance in ohm X_s = 4.2 ; // Synchronous reactance in ohm P_t = 811 ; // Input power in kW PF = 0.8 ; // Power factor leading // Calculated values E_gp = 3687 ; // Generated voltage/phase in volt V_p = V_L / sqrt(3); // Phase voltage in volt E_r = 412.8 ; // Resultant EMF across armature/phase in volt deba = 119.81 ; // Difference angle at 0.8 leading PF in degrees theta = 36.87 ; // Power factor angle in degrees IaXs = 409.7 ; // Voltage drop across synchronous reactance in volt IaRa = 50.74 ; // Voltage drop across armature resistance in volt // Calculations // Torque angle alpha in degrees calculated by different Eqns // case a alpha1 = acosd( ( E_gp^2 + V_p^2 - E_r^2 ) / ( 2*E_gp*V_p ) ); // Eq.8-12 // case b alpha2 = asind( ( E_r * sind(deba) ) / ( E_gp ) ); // Eq.8-13 // case c alpha3 = theta - atand( (V_p*sind(theta) + IaXs) / (V_p*cosd(theta) - IaRa) );// Eq.8-14 // Display the results disp("Example 8-5 Solution : "); printf(" \n a: Using Eq.(8-12) \n alpha = %.2f degrees \n ", alpha1 ); printf(" \n b: Using Eq.(8-13) \n alpha = %.2f degrees \n ", alpha2 ); printf(" \n c: Using Eq.(8-14) \n alpha = %.2f degrees \n ", alpha3 ); printf(" \n Slight variation in case c alpha is due to tan inverse value "); printf(" \n which was calulated to be 42.445604 degrees, instead of 42.44 degrees(textbook).")