// Electric Machinery and Transformers // Irving L kosow // Prentice Hall of India // 2nd editiom // Chapter 7: PARALLEL OPERATION // Example 7-7 clear; clc; close; // Clear the work space and console. // Given data as per Ex.(7-5) E1 = 220 ; // Terminal voltage of alternator 1 in volt E2 = 222 ; // Terminal voltage of alternator 2 in volt f1 = 60 ; // Frequency of alternator 1 in Hz f2 = 59.5 ; // Frequency of alternator 2 in Hz // Switch is open // Given data as per Ex.(7-6) E = 220 ; // Voltage generated in volt E_1 = E ; // Voltage generated by alternator 1 in volt E_2 = E ; // Voltage generated by alternator 2 in volt f_1 = 60 ; // Frequency in Hz of alternator 1 f_2 = 58 ; // Frequency in Hz of alternator 2 // Switch is open // Given data as per Ex.(7-7) R_a1 = 0.1 ; // armature resistance of alternator 1 in ohm R_a2 = 0.1 ; // armature resistance of alternator 2 in ohm X_a1 = 0.9 ; // armature reactance of alternator 1 in ohm X_a2 = 0.9 ; // armature reactance of alternator 2 in ohm Z_1 = R_a1 + %i*X_a1 ; // Effective impedance of alternator 1 in ohm Z_2 = R_a1 + %i*X_a2 ; // Effective impedance of alternator 2 in ohm // Switches are closed at the proper instant for paralleling. // Calculations // In Ex.7-5, E_r = E2 - E1 ; // Effective voltage generated in volt I_s = E_r / (Z_1 + Z_2); // Synchronizing current in the armature in A I_s_m = abs(I_s);//I_s_m=magnitude of I_s in A I_s_a = atan(imag(I_s) /real(I_s))*180/%pi;//I_s_a=phase angle of I_s in degrees // In Ex.7-6, Er = E_2 -E_1 ; // Effective voltage generated in volt Is = Er / ( Z_1 + Z_2); // Synchronizing current in the armature in A // Display the results disp("Example 7-7 Solution : "); printf(" \n In Ex.7-5, "); printf(" \n E_r = %d V ", E_r); printf(" \n I_s = ");disp(I_s); printf(" \n I_s = %.3f <%.2f A ",I_s_m, I_s_a); printf(" \n where %.3f is magnitude in A and %.2f is phase angle in degrees \n",I_s_m,I_s_a); printf(" \n In Ex.7-6, "); printf(" \n E_r = %d V ", Er ); printf(" \n I_s = %d A",Is);