// Electric Machinery and Transformers // Irving L kosow // Prentice Hall of India // 2nd editiom // Chapter 6: AC DYNAMO VOLTAGE RELATIONS-ALTERNATORS // Example 6-6 clear; clc; close; // Clear the work space and console. // Given data // 3-phase Y-connected alternator E_L = 11000 ; // Line voltage generated in volt kVA = 165000 ; // kVA rating of the alternator R_p = 0.1 ; // Armature resistance in ohm/per phase Z_p = 1.0 ; // Synchronous reactance/phase Z_r = 0.8 ; // Reactor reactance/phase // Calculations E_p = E_L / sqrt(3); // Rated phase voltage in volt I_p = (kVA * 1000)/(3*E_p); // Rated current per phase in A // case a I_max_a = E_p / R_p ; // Maximum short-circuit current in A (case a) overload_a = I_max_a / I_p ; // Overload (case a) // case b I_steady = E_p / Z_p ; // Sustained short-circuit current in A overload_b = I_steady / I_p ; // Overload (case b) // case c Z_t = R_p + %i*Z_r ; // Total reactance per phase I_max_c = E_p / Z_t ; // Maximum short-circuit current in A (case b) I_max_c_m=abs(I_max_c);//I_max_c_m=magnitude of I_max_c in A I_max_c_a=atan(imag(I_max_c) /real(I_max_c))*180/%pi;//I_max_c_a=phase angle of I_max_c in degrees overload_c = I_max_c_m / I_p ; // Overload (case a) // Display the results disp("Example 6-6 Solution : "); printf("\n root 3 value is taken as %f , so slight variations in the answer.\n", sqrt(3)); printf(" \n a: I_max = %d A ", I_max_a ); printf(" \n overload = %.1f * rated current \n", overload_a ); printf(" \n b: I_steady = %d A ", I_steady ); printf(" \n overload = %.2f * rated current \n", overload_b ); printf(" \n c: Rectangular form :\n I_max = "); disp(I_max_c); printf(" \n Polar form :"); printf(" \n I_max = %d <%.2f A ", I_max_c_m , I_max_c_a ); printf(" \n where %d is magnitude and %.2f is phase angle\n",I_max_c_m,I_max_c_a); printf(" \n overload = %.3f * rated current \n", overload_c );