// Electric Machinery and Transformers // Irving L kosow // Prentice Hall of India // 2nd editiom // Chapter 6: AC DYNAMO VOLTAGE RELATIONS-ALTERNATORS // Example 6-3 clear; clc; close; // Clear the work space and console. // Given data // From Ex.6-1 and Ex.6-2 we have V_P and E_g values as follows // Note : approximated values are considered when root 3 value is taken as 1.73 // as in textbook V_P = 2660 ; // Phase voltage E_g_a1 = 3836 ; // E_g at unity PF (Ex.6-1 case a) E_g_b1 = 4814 ; // E_g at 0.75 PF lagging (Ex.6-1 case b) E_g_a2 = 2364 ; // E_g at 0.75 PF leading (Ex.6-2 case a) E_g_b2 = 1315 ; // E_g at 0.40 PF leading (Ex.6-2 case b) // Calculations VR_a = ( E_g_a1 - V_P )/V_P * 100 ; // voltage regulation at unity PF (Ex.6-1 case a) VR_b = ( E_g_b1 - V_P )/V_P * 100 ; // voltage regulation at 0.75 PF lagging (Ex.6-1 case b) VR_c = ( E_g_a2 - V_P )/V_P * 100 ; // voltage regulation at 0.75 PF leading (Ex.6-2 case a) VR_d = ( E_g_b2 - V_P )/V_P * 100 ; // voltage regulation at 0.40 PF leading (Ex.6-2 case b) // Display the results disp("Example 6-3 Solution : "); printf(" \n a: At unity PF : "); printf(" \n VR = %.1f percent \n ", VR_a ); printf(" \n b: At 0.75 PF lagging : "); printf(" \n VR = %.2f percent \n ", VR_b ); printf(" \n c: At 0.75 PF leading : "); printf(" \n VR = %.2f percent \n ", VR_c ); printf(" \n d: At 0.40 PF leading : "); printf(" \n VR = %.1f percent \n ", VR_d );