// Electric Machinery and Transformers // Irving L kosow // Prentice Hall of India // 2nd editiom // Chapter 4: DC Dynamo Torque Relations-DC Motors // Example 4-17 clear; clc; close; // Clear the work space and console. // Given data V_a = 230 ; // Rated armature voltage in volt P = 10 ; // Rated power in hp S = 1250 ; // Rated speed in rpm R_A = 0.25 ; // Armature resistance in ohm R_p = 0.25 ; // Interpolar resistance BD = 5 ; // Brush voltage drop in volt R_s = 0.15 ; // Series field resistance in ohm R_sh = 230 ; // Shunt field resistance in ohm phi_1 = 1 ;// Original flux per pole // Long-shunt cumulative connection I_l = 55 ; // Line current in A at rated load phi_2 = 1.25 ; // Flux increased by 25% due to long-shunt cumulative connection I_ol = 4 ; // No-load line current in A S_o = 1810 ; // No-load speed in rpm // Calculations R_a = R_A + R_p ; // Effective armature resistance in ohm I_f = V_a / R_sh ; // Field current in A in shunt winding I_a = I_ol - I_f ; // Armature current in A for shunt connection E_c_o = V_a - ( I_a * R_a + BD ); // No-load BACK EMF in volt for shunt connection E_c_o1 = V_a - ( I_a * R_a + I_a * R_s + BD ); // No-load BACK EMF in volt for // long shunt cumulative connection S_n1 = S_o * ( E_c_o1 / E_c_o ); // Speed at no load I_f = V_a / R_sh ; // Field current in A in shunt winding I_a_lsh = I_l - I_f ; // Armature current in A E_c_full_load = V_a - ( I_a_lsh * R_a + BD ); // No-load BACK EMF in volt at // full-load for long-shunt cumulative connection E_c_full_load_lsh = V_a - ( I_a_lsh * R_a + I_a_lsh * R_s + BD ); // BACK EMF in volt // at full-load for long-shunt cumulative motor S_r = S_o * ( E_c_full_load / E_c_o ); // Speed at rated load for shunt connection S_r_lsh = S_n1 * ( E_c_full_load_lsh / E_c_o1 ) * ( phi_1 / phi_2 ); // Speed at rated load for shunt connection P_d = E_c_full_load * I_a_lsh ; // Internal power in watts hp = P_d / 746 ; // Internal horse power T_shunt = ( hp * 5252 ) / S_r ; // Internal torque @ full-load for shunt motor I_a1 = I_a_lsh; // Armature current for shunt motor in A I_a2 = I_a_lsh; // Armature current for long-shunt cumulative motor in A T_comp = T_shunt * ( phi_2 / phi_1 ) * ( I_a2 / I_a1); // Internal torque // at full-load for long-shunt cumulative motor in A Horsepower = ( E_c_full_load_lsh * I_a_lsh ) / 746 ; // Internal horsepower of // compound motor based on flux increase // Display the results disp(" Example 4-17 Solution : "); printf(" \n a: S_n1 = %d rpm \n", S_n1 ); printf(" \n b: S_r = %d rpm \n", S_r_lsh ); printf(" \n c: Internal torque of shunt motor at full-load : "); printf(" \n T_shunt = %.2f lb-ft ", T_shunt ); printf(" \n T_comp = %.2f lb-ft \n", T_comp ); printf(" \n d: Horsepower = %.1f hp \n", Horsepower ); printf(" \n e: The internal horsepower exceeds the rated horsepower because "); printf(" \n the power developed in the motor must also overcome the internal"); printf(" \n mechanical rotational losses. ");