// Electric Machinery and Transformers // Irving L kosow // Prentice Hall of India // 2nd editiom // Chapter 14: TRANSFORMERS // Example 14-24 clear; clc; close; // Clear the work space and console. // Given data(From Ex.14-23) V_1 = 2300 ; // Primary voltage in volt V_2 = 230 ; // Secondary voltage in volt S = 500 ; // Power rating of the transformer in kVA f= 60 ; // Frequency in Hz // Open circuit test data V_oc = 208 ; // Open circuit voltage in volt I_oc = 85 ; // Open circuit current in A P_oc = 1800 ; // Power measured in W // Short circuit test data V_sc = 95 ; // Short circuit voltage in volt I_sc = 217.4 ; // Short circuit current in A P_sc = 8200 ; // Power measured in W // Calculations // Preliminary calculations S_b = S ; // Base voltage in kVA Psc = 8.2 ; // Power measured in kW during SC-test P_Cu_pu = Psc / S_b ; // per unit value of P_Cu at rated load Poc = 1.8 ; // Power measured in kW during OC-test P_CL_pu = Poc / S_b ; // per unit value of P_CL at rated load // case a LF1 = 3/4 ; // Load fraction of rated load PF1 = 1 ; // unity Power factor eta_pu_LF1 = (LF1*PF1) / ((LF1*PF1) + P_CL_pu + (LF1)^2*P_Cu_pu ) * 100 ; // Efficiency at rated load,unity PF // case b LF2 = 1/4 ; // Load fraction of rated load PF2 = 0.8 ; // 0.8 lagging PF eta_pu_LF2 = (LF2*PF2) / ((LF2*PF2) + P_CL_pu + (LF2)^2*P_Cu_pu ) * 100 ; // Efficiency at 1/4 rated load,0.8 lagging PF // case c LF3 = 5/4 ; // Load fraction of rated load PF3 = 0.8 ; // 0.8 leading PF eta_pu_LF3 = (LF3*PF3) / ((LF3*PF3) + P_CL_pu + (LF3)^2*P_Cu_pu ) * 100 ; // Efficiency at r1/4 rated load,0.8 leading PF // Display the results disp("Example 14-24 Solution : "); printf(" \n Efficiency(pu) :\n "); printf(" \n a: η_pu at %.2f rated-load = %.2f percent \n",LF1,eta_pu_LF1); printf(" \n b: η_pu at %.2f rated-load = %.2f percent \n",LF2,eta_pu_LF2); printf(" \n c: η_pu at %.2f rated-load = %.2f percent \n",LF3,eta_pu_LF3);