// Electric Machinery and Transformers // Irving L kosow // Prentice Hall of India // 2nd editiom // Chapter 13: RATINGS,SELECTION,AND MAINTENANCE OF ELECTRIC MACHINERY // Example 13-9 clear; clc; close; // Clear the work space and console. // Given data // single phase alternator V = 500 ; // Rated voltage of the alternator in volt P = 20 ; // Rated power of the alternator in kVA I = 40 ; // Rated current of the alternator in A R = 2 ; // Armature resistance in ohm X = 15 ; // Armature reactance in ohm // Calculations // case a V_b = V ; // base voltage in volt I_b = I ; // base current in A R_pu = (R*I_b)/V_b ; // per-unit value of armature resistance in p.u // case b jX_pu = (X*I_b)/V_b ; // per-unit value of armature reactance in p.u // case c // subscript 1 indicates method 1 for finding Z_p.u Z_pu1 = R_pu + %i*(jX_pu); // per-unit value of armature impedance in p.u Z_pu1_m = abs(Z_pu1);//Z_pu1_m = magnitude of Z_pu1 in p.u Z_pu1_a = atan(imag(Z_pu1) /real(Z_pu1))*180/%pi;//Z_pu1_a=phase angle of Z_pu1 in degrees // subscript 2 indicates method 2 for finding Z_p.u Z_pu2 = (R + %i*X)*(I/V); // per-unit value of armature impedance in p.u Z_pu2_m = abs(Z_pu2);//Z_pu2_m = magnitude of Z_pu2 in p.u Z_pu2_a = atan(imag(Z_pu2) /real(Z_pu2))*180/%pi;//Z_pu2_a=phase angle of Z_pu2 in degrees // Display the results disp("Example 13-9 Solution : "); printf(" \n a: Armature resistance per unit value\n R_p.u = %.2f p.u \n",R_pu); printf(" \n b: Armature reactance per unit value\n jX_p.u in p.u = ");disp(%i*jX_pu); printf(" \n c: Armature impedance per unit value\n"); printf(" \n (method 1)\n Z_p.u in p.u = ");disp(Z_pu1); printf(" \n Z_p.u = %.3f <%.1f p.u \n",Z_pu1_m,Z_pu1_a ); printf(" \n (method 2)\n Z_p.u in p.u = ");disp(Z_pu2); printf(" \n Z_p.u = %.3f <%.1f p.u \n",Z_pu2_m,Z_pu2_a );