clc; clear; //Example 6.13 Cpf=4.18 //[kJ/kg.K] dT1=18 //[K] dT2=17 //[K] dT3=34 //[K] mf_dot=4 //[kg/s] Ts=394 //[K] bp=325 //Bp of water at 13.172 kPa [K] dT=Ts-bp //[K] lambda_s=2200 //[kJ/kg] T1=Ts-dT1 //[K] lambda1=2249 //[kJ/kg] lambda_v1=lambda1 //[kJ/kg] T2=T1-dT2 //[K] lambda2=2293 //[kJ/kg] lambda_v2=lambda2 //[kJ/kg] T3=T2-dT3 //[K] lambda3=2377 //[kJ/kg] lambda_v3=lambda3 //[kJ/kg] ic=0.1 //Initial conc of solids fc=0.5 //Final conc of solids m3dot_dash=(ic/fc)*mf_dot //[kg/s] mv_dot=mf_dot-m3dot_dash //Total evaporation in [kg/s] //Material balance over first effect //mf_dot=mv1_dot_m1dot_dash //Energy balance: //ms_dot*lambda_s=mf_dot*(Cpf*(T1-Tf)+mv1_dot*lambda_v1) //Material balance over second effect //m1dot_dash=mv2_dot+m2dot_dash //Enthalpy balance: //mv1_dot*lambda_v1+m1dot_dash(cp*(T1-T2)=mv2_dot*lambda_v2) //Material balance over third effect //m2dot_dash=mv3_dot+m3dot+dash //Enthalpy balance: //mv2_lambda_v2+m2dot_dash*cp*(T2-T3)=mv3_dot*lambda_v3 294 mv2_dot=3.2795/3.079 //[kg/s] mv1_dot=1.053*mv2_dot-0.1305 //[kg/s] mv3_dot=1.026*mv2_dot+0.051 //[kg/s] ms_dot=(mf_dot*Cpf*(T1-294)+mv1_dot*lambda_v1)/lambda_s //[kg/s] eco=mv_dot/ms_dot //Steam economy eco=round(eco) printf("\nSteam economy is %d\n",eco); U1=3.10 //[kW/sq m.K] U2=2 //[kW/sq m.K] U3=1.10 //[kW/sq m.K] //First effect: A1=ms_dot*lambda_s/(U1*dT1) //[sq m] A2=mv1_dot*lambda_v1/(U2*dT2) //[sq m] A3=mv2_dot*lambda_v2/(U3*dT3) //[sq m] //Areas are calculated witha deviation of +-10% printf("\nArea pf heat transfer in each effect is %f sq m\n",A3)