clc; clear; //Example 5.15 //CASE I: Cp=4*10^3; //[J/kg.K] t1=295; //[K] t2=375; //[K] sp=1.1; //Specific gravity of liquid v1=1.75*10^-4; //Flow of liquid in [m^3/s] rho=sp*1000 //[kg/m^3] m_dot=v1*rho //[kg/s] Q=m_dot*Cp*(t2-t1) //[W] T=395; //[K] dT1=T-t1 //[K] dT2=T-t2 //[K] dTlm=(dT1-dT2)/log(dT1/dT2) //[K] U1A=Q/dTlm //[W/K] //CASE-II v2=3.25*10^-4 //Flow in [m^3/s] T2=370 //[K] m_dot=v2*rho //[kg/s] Q=m_dot*Cp*(T2-t1) //[W] dT1=T-t1 //[K] dT2=T-T2 //[K] dTlm=(dT1-dT2)/log(dT1/dT2) //[K] U2A=Q/dTlm //[W/K] //since u is propn to v //hi =C*v^0.8 U2_by_U1=U2A/U1A ho=3400 //Heat transfer coeff for condensing steam in [W/sq m.K] C=poly(0,"C") //Let C=1 and v=v1 //C=1; v=v1; //=1.75*10^-4 m^3/s hi=C*v^0.8 U1=1/(1/ho+1/hi) // //When v=v2 v=v2; hi=C*v^0.8 U2=1/(1/ho+1/hi) // //Since U2=1.6U1 //On solving we get: C=142497 v=v1 hi=C*v^0.8 U1=1/(1/ho+1/hi) // A=U1A/U1 //Heat transfer area in [sq m] printf("\n Overall heat transfer coefficient is %f W/sq m.K and\n\nHeat transfer area is %f sq m",U1,A);