clc; clear; //Example 5.10 m_dot=7250 //[kg/h] of nitrobenzene Cp=2.387; //[kJ/kg.K] mu=7*10^-4; //[kg/m.s] k=0.151; //[W/m.K] vis=1; Ft=0.9; //LMTD correction factor T1=400 //[K] T2=317 //[K] t1=333 //[K] t2=300 //[K] dT1=T1-t1 //[K] dT2=T2-t2 //[K] dTlm=(dT1-dT2)/log(dT1/dT2) //[K] //For nitrobenzene Q=m_dot*Cp*(T1-T2) //[kJ/h] Q=Q*1000/3600 //[W] n=170 //No. of tubes L=5 //[m] Do=0.019 //[m] Di=0.015 //[m] Ao=n*%pi*Do*L //[sq m] Uo=Q/(Ao*Ft*dTlm) //[W/sq m.K] Ud=Uo //[W/sq m.K] B=0.15 //Baffle spacing [m] Pt=0.025 //Tube pitch in [m] C_dash=Pt-Do //Clearance in [m] id=0.45 //[m] //Shell side cross flow area as=id*C_dash*B/Pt //[sq m] //Equivalent diameter of shell De=4*(Pt^2-(%pi/4)*(Do^2))/(%pi*Do) //[m] //Mass velocity on shell side Gs=m_dot/as //[kg/(m.h)] Gs=Gs/3600 //[kg/m^2.s] mu=7*10^-4 //[kg/m.s] Cp=Cp*1000 //[J/kg.K] Nre=De*Gs/mu //Reynolds number Npr=Cp*mu/k //Prandtl number //From empirical eqn: mu_w=mu // Nnu=0.36*Nre^0.55*Npr^(1/3) ho=Nnu*k/De //[W/sq m.K] hi=1050 //Given [W/sq m.K] Uo=1/(1/ho+(1/hi)*(Do/Di)) //[W/sq m.K] Uc=Uo //W/sq m.K //Suitability of heat exchanger Rd_given=9*10^-4 //[W/sq m.K] Rd=(Uc-Ud)/(Uc*Ud) //[W/sq m.K] printf("\n Rd calculated(%f W/m^2.K) is mazimum allowable scale resistance\n",Rd); printf("\n\nAs Rd calculated (%f W/sq m.K)(OR 1.1*10^-3) is more than Rd given(%f W/sq m,K),the given heat exchanger is suitable\n",Rd,Rd_given);